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Introduction

Let ν be the standard normal measure and L2(R,B, ν) be the space of functions f such
that E(f(N)2) <∞, where N ∼ N (0, 1). It is well known that the Hermite polynomials
can be used to form an orthonormal basis for L2(R,B, ν). We can generalize and extend
this idea to the space of square integrable random variables, L2(Ω,F ,P), which we will
decompose into orthogonal subspaces, known as the Wiener chaoses. In particular, for
every F ∈ L2(Ω,F ,P), we have the Wiener-Itô expansion

F =
∞∑
q=0

Iq(fq),

where Iq(fq) is in the qth Wiener chaos, but is also a Wiener-Itô integral. In fact, it turns
out that all elements of the Wiener chaos are such integrals.

Originally developed by Wiener [Wie38] and Itô [Itô51], the concept of the Wiener
chaos allows us to use Gaussian analysis in the study of non-Gaussian phenomena. In
particular, the main topic of this text is limit theorems on the Wiener chaos. Unlike the
setting of the classical central limit theorem, we deal with the convergence of random
variables that are generally neither independent nor identically distributed. The limits
are Gaussian in some cases, but not always.

In 2005, Nualart and Peccati [NP05] proved a remarkable result which is now known as
the fourth moment theorem. Suppose that (Iq(fn))n≥1 is a sequence of random variables
on the qth Wiener chaos with E(Iq(fn)2) → 1 as n → ∞, Nualart and Peccati showed
that the convergence in distribution of (Iq(fn))n≥1 to a standard normal random variable
is equivalent to the fourth moment condition E(Iq(fn)4)→ 3 as n→∞.

Later, Nourdin and Peccati [NP09] provided an alternative proof by combining Malli-
avin calculus with Stein’s method, which has the advantage of being able to derive explicit
distance bounds and rates of convergence. Their idea for proving limit theorems can be
understood heuristically. Stein’s method is used to write the total variation distance
between a random variable Fn and a standard normal random variable N in terms of
differential operators

dTV(Fn, N) ≈ sup
f∈C1(R)

|E(f ′(Fn)− E(Ff(Fn))| .

Then this distance can be computed using formulas for Malliavin calculus and bounded.

Finally, Fn
d−→ N is proved by showing that the bound for dTV(Fn, N) converges to 0.

The aim of this text is to develop the theory underlying the fourth moment theorem.
We will make the above argument rigorous. We also discuss some applications of this
theory to limit theorems for partial sum processes and parameter estimation for Hermite
processes.
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2 INTRODUCTION

The first two chapters are used to develop the tools that we will use throughout the
text. In Chapter 1, the Wiener chaos is shown to be the subspaces in an orthogonal direct
sum decomposition of L2(Ω,F ,P). We will show that the elements of the Wiener chaos
are Wiener-Itô integrals and derive some of their properties.

In Chapter 2, we introduce Malliavin calculus, an infinite-dimensional differential
calculus for functions of Gaussian processes. The three Malliavin operators, including a
derivative for random variables, are developed.

Chapter 3 introduces the total variation distance between probability measures. Stein’s
method and Malliavin calculus is combined to prove the fourth moment theorem in both
the univariate and multivariate context.

The final two chapters can be viewed as applications of the techniques and limit
theorems derived in the first three chapters. In Chapter 4, we study the limit of the
partial sum processes of (f(Xn))n∈Z, where (Xn)n∈Z is a stationary Gaussian process and
f : R → R is a measurable function. It is well known that the limiting process must be
self-similar with stationary increments. Furthermore, the limit depends on the covariance
structure of the process (f(Xn))n∈Z. In the case where it exhibits short range dependence,
we use a corollary of the fourth moment theorem to give a modern proof of the Breuer-
Major theorem [BM83], showing that the limiting process is Brownian motion. But in
the case of long range dependence, the limit is a Hermite process, which is non-Gaussian.

In Chapter 5, we further explore the Hermite process, which turns out to be a Wiener-
Itô integral and a generalization of fractional Brownian motion with Hurst parameter
H > 1/2 and the Rosenblatt process. In particular, following the work of Chronopoulou,
Tudor and Veins [CTV11, TV09], the limit of the leading term in the Wiener Itô expansion
for the quadratic variation is used to show that an estimator of the Hurst parameter of
a Hermite process converges to a Rosenblatt distribution.



Chapter 1

Wiener Chaos

In this chapter, we introduce the Wiener chaos which are orthogonal subspaces in the
decomposition of the space of square integrable random variables. This lays the foun-
dation for the theory developed in later sections. The elements of the Wiener chaos are
our primary object of study and we show that they coincide with Wiener-Itô integrals.
We also derive some useful properties of Wiener-Itô integrals and their connection with
Hermite polynomials.

The main references for this chapter are Nualart [Nua06], Nourdin and Peccati [NP12],
and Janson [Jan97].

1.1 Isonormal Gaussian Processes

Let H be a real separable Hilbert space.

Definition 1.1.1. A stochastic process W = (W (f))h∈H defined on the probability space
(Ω,G,P) is called an isonormal Gaussian process indexed by H, if W (f) are centered
Gaussian random variables and E(W (f)W (g)) = 〈f, g〉H, for all f, g ∈ H.

Isonormal Gaussian processes originated from the work of R.M. Dudley [Dud67] and
they are a generalization of Gaussian measures and allow us to bring Hilbert space tech-
niques into the theory. They will be useful in later sections, for example, in constructing
the Wiener-Itô integrals and defining Malliavin operators.

Let F = σ(X) be the sigma field generated by W . We will denote the space of square
integrable random variables measurable with respect to F by L2(Ω) := L2(Ω,F ,P). An
isonormal Gaussian process W is a closed subspace of L2(Ω). Since Gaussian processes
are determined by their mean and covariance functions, the random variables in W are
characterized by

E(W (f)) = 0,

Var(W (f)) = ‖f‖2
H ,

Cov(W (f),W (g)) = 〈f, g〉H ,

for all f, g ∈ H. Also, the linear map f 7→ W (f) is an isometry from H onto W .
The next proposition shows that given a real separable Hilbert space H, it is always

possible to construct an isonormal Gaussian process indexed by H.

Proposition 1.1.2. Let H be a real separable Hilbert space, then there exists an isonormal
Gaussian process indexed by H.

3



4 CHAPTER 1. WIENER CHAOS

Proof. Let (Zi)i∈N be a sequence of independent and identically distributed standard
Gaussian random variables on a probability space (Ω,G,P) and let (ei)i∈N be an or-
thonormal basis for H. We will show that W = (W (f))f∈H is an isonormal Gaussian
process indexed by H, where

W (f) :=
∞∑
i=0

〈f, ei〉H Zi.

Note that Parseval’s identity says
∑∞

i=0 〈fi, ei〉
2
H = ‖f‖2

H < ∞. So for n > m, using
orthogonality, we have∥∥∥∥∥

n∑
i=0

〈f, ei〉H Zi −
m∑
i=0

〈f, ei〉H Zi

∥∥∥∥∥
2

H

=
n∑

i=m+1

〈f, ei〉2H → 0

as n,m→∞. Therefore, the partial sum sequence
∑n

i=0 〈f, ei〉H Zi is Cauchy in L2(Ω,G,P)
and W (f) is convergent.

By construction, W (f) is a centered Gaussian random variables for all f ∈ H. Using
orthogonality, the covariance is

E(W (f)W (g)) = E

(
∞∑
i=0

∞∑
j=0

〈f, ei〉H 〈g, ei〉H ZiZj

)

=
∞∑
i=0

∞∑
j=0

〈f, ei〉H 〈g, ei〉H

= 〈f, g〉H
for all f, g ∈ H, where the last equality is a basic property of orthonormal bases.

We now provide some examples of isonormal Gaussian processes.

Example 1.1.3. Consider the probability space (R,B(R), ν), where ν is the standard
Gaussian probability measure, defined for all A ∈ B(R) by

ν(A) :=

∫
A

1√
2π
e−

t2

2 dt. (1.1.1)

Let H = R and set (W (f))(x) = fx for all f ∈ H. Then W = (W (f))f∈H is an isonormal
Gaussian process with W (f) ∼ N (0, f 2) and Cov(W (f),W (g)) = fg.

Example 1.1.4. Consider the isonormal Gaussian processW indexed byH = L2(R,B(R), µ),
where µ is the Lebesgue measure. For all t ≥ 0, let Bt := W (1[0,t]). Then we have

E((Bt1 −Bs1)(Bt2 −Bs2)) =
〈
1[s1,t1], 1[s2,t2]

〉
H = µ([s1, t1] ∩ [s2, t2]) = 0

for all 0 ≤ s1 < t1 < s2 < t2. Thus, (Bt)t≥0 has independent increments.
We also have

Var(Bt) =
∥∥1[0,t]

∥∥2

H = t.

This implies that (Bt)t≥0 has stationary increments as Bt − Bs ∼ N(0, t − s), for all
0 ≤ s < t. Furthermore, E((Bt−Bs)

4) = 3(t−s)2, so (Bt)t≥0 also satisfies the Kolmogorov
continuity criterion, implying that there exists an almost surely continuous version of Bt.
Finally, B0 = 0 almost surely. So there is a version of (Bt)t≥0 that is Brownian motion.
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1.2 Hermite Polynomials

In this section, we will introduce the Hermite polynomials, which will play a key role
throughout the rest of this thesis.

Definition 1.2.1. Let q ∈ N. The qth Hermite polynomial is defined as

Hq(x) = (−1)q exp

(
x2

2

)
∂q

∂xq
exp

(
−x

2

2

)
,

for x ∈ R. We set H0 = 1.

The first few Hermite polynomials are

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x.

The following lemma represents Hermite polynomials as the coefficient of a generating
function, which will be useful to prove further results about these polynomials.

Lemma 1.2.2. For all x, t ∈ R, we have

exp

(
tx− t2

2

)
=
∞∑
q=0

tq

q!
Hq(x).

Proof. Since exp (−(x− t)2/2) is a symmetric function of t and x,

∂q

∂tq
exp

(
−(x− t)2

2

)
=

∂q

∂xq
exp

(
−(x− t)2

2

)
,

for all x, t ∈ R. Thus, the Taylor series expansion of exp((x − t)2/2) as a function of t
can be written as

exp

(
−(x− t)2

2

)
=
∞∑
q=0

tq

q!

∂q

∂tq
exp

(
−(x− t)2

2

)∣∣∣∣
t=0

=
∞∑
q=0

tq

q!
(−1)q

∂q

∂xq
exp

(
−x

2

2

)
.

Now multiplying both sides by exp(x2/2) and using the definition of the Hermite poly-
nomial gives the desired result.

We now give some basic properties of Hermite polynomials.

Proposition 1.2.3. Let p, q ∈ N and Hq be the qth Hermite polynomial.

(i) The sequence (Hq/
√
q!)q∈N is an orthonormal basis for L2(R,B(R), ν), where ν is

the standard Gaussian measure defined in (1.1.1).
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(ii) All functions f ∈ L2(R,B(R), ν) have an orthogonal expansion given by

f =
∞∑
q=0

aqHq,

where

aq =

∫ ∞
−∞

f(x)Hq(x) dν(x).

(iii) For all q ≥ 1, we have H ′q(x) = qHq−1(x).

(iv) For all q ≥ 1, we have Hq+1(x) = xHq(x)− qHq−1(x).

(v) Let X, Y ∼ N (0, 1) with covariance E(XY ) = ρ, then

E(Hp(X)Hq(Y )) =

{
0 if p 6= q

p!ρp if p = q.

Proof. (i) Using Lemma 1.2.2, we have

exp

(
(s+ t)x− s2 + t2

2

)
=

∞∑
p,q=0

sptq

p!q!
Hp(x)Hq(x).

Now integrating both sides with respect to ν gives

est =
∞∑

p,q=0

sptq

p!q!

∫ ∞
−∞

Hp(x)Hq(x) dν(x).

By comparing the coefficients of st on both sides, we have 〈Hp, Hq〉L2(R,B(R),ν) = 0 when

p 6= q, otherwise 〈Hp, Hq〉L2(R,B(R),ν) = p!2. This proves that (Hq/
√
q!)q∈N is an orthonor-

mal set.
It remains to show that the span (Hq/

√
q!)q∈N is dense in L2(R,B(R), ν). Since Hq is

a polynomial of degree q, the span {H0, . . . , Hq} = span {1, x, . . . , xq}, so this reduces to
showing that the span of (xq)q∈N is dense in L2(R,B(R), ν), which is true (see Proposition
1.1.5 in [NP12]). Therefore, (Hq/

√
q!)q∈N is an orthonormal basis for L2(R,B(R), ν).

(ii) This is an immediate corollary of (i).
(iii) Using Lemma 1.2.2 and differentiating with respect to x, we have

∞∑
q=0

tq

q!
H ′q(x) = t exp

(
tx− t2

2

)
=
∞∑
q=1

tq

(q − 1)!
Hq−1(x).

The result follows by applying the derivative ∂q/∂tq at t = 0 to both sides.
(iv) Using Lemma 1.2.2 and differentiating with respect to t, we have

∞∑
q=0

tq

q!
Hq+1(x) = (x− t) exp

(
tx− t2

2

)
=
∞∑
q=0

tq

q!
xHq(x)−

∞∑
q=1

tq

(q − 1)!
Hq−1(x).

The result follows by applying the derivative ∂q/∂tq at t = 0 to both sides.
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(v) The moment generating function for (X, Y ) is E(esX+tY ) = e(s2+2ρst+t2)/2. Using
this fact we have

E

(
exp

(
sX − s2

2

)
exp

(
tY − t2

2

))
= exp

(
−s

2 + t2

2

)
E(esX+tY )

= eρst

=
∞∑
q=0

sqtq

q!
ρq. (1.2.1)

On the other hand, using Lemma 1.2.2

E

(
exp

(
sX − s2

2

)
exp

(
tY − t2

2

))
=
∞∑
p=0

∞∑
q=0

sptq

p!q!
E(Hp(X)Hq(Y )). (1.2.2)

Now applying the derivative ∂p+q/(∂sp∂tq) at s = t = 0 to (1.2.1) and (1.2.2) gives
the desired result.

We will also state the following obvious fact because it will be used a few times in the
following sections.

Lemma 1.2.4. For all q ∈ N, there exists constants cr ∈ R, r = 0, . . . , q such that

xq =

q∑
r=0

crHr(x).

Proof. Starting with the qth Hermite polynomial, Hq, we can subtract cq−1Hq−1, for some
cq−1 ∈ R to cancel the xq−1 term, and so on.

1.3 Wiener Chaos Decomposition

We refer the reader to Appendix B for properties of direct sums and tensor products of
Hilbert spaces, which will be used throughout this section.

We saw in the previous section that Hermite polynomials can be used to construct an
orthonormal basis for L2(R,B(R), ν) and that every f ∈ L2(R,B(R), ν) has an orthog-
onal expansion in Hermite polynomials. Our aim in introducing the Wiener chaos is to
generalize and extend this idea to the space of square integrable random variables L2(Ω).

Recall that H is a real separable Hilbert space and W = (W (f))f∈H is an isonormal
Gaussian process indexed by H.

Definition 1.3.1. Let q ∈ N. The qth Wiener chaos of W , denoted by Hq, is the
closed subspace of L2(Ω) spanned by {Hq(W (f)) | f ∈ H, ‖f‖H = 1}. We set H0 = R.

The elements of the Wiener chaos and their properties will be the main object of study.
The concept of the Wiener chaos was originally introduced using polynomial chaos by
Wiener [Wie38] to study statistical mechanics, who also provided the first proof of the
Wiener chaos decomposition in the below theorem. A modern proof of this result can
be found in Nourdin [NP12]. The proceeding theorem expresses L2(Ω) as an orthogonal
direct sum of Hilbert spaces, the definition of this concept can be found in Section B.3.
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Theorem 1.3.2 (Wiener Chaos Decomposition). The space L2(Ω) has the orthogonal
direct sum decomposition

L2(Ω) =
∞⊕
q=0

Hq.

Proof. By Proposition 1.2.3 (v), Hp is orthogonal to Hq for all p 6= q. Now recalling
Definition B.3.1, it remains to show that the span of {Hq(W (f)) | q ∈ N, f ∈ H, ‖f‖H = 1}
is dense in L2(Ω).

Suppose that F ∈ L2(Ω) such that E(FHq(W (f))) = 0 for all q ∈ N, f ∈ H with
‖f‖H = 1, then by Proposition B.2.2, it suffices to prove that F = 0 almost surely.

We can write xq as a linear combination of Hermite polynomials, so E(FW (f)q) = 0
for all q ∈ N, f ∈ H with ‖f‖H = 1, which implies that

E
(
FeiW (f)

)
= 0 (1.3.1)

for all f ∈ H. Now fix n ≥ 1, let e1, . . . , en be elements from an orthonormal basis of
H, and let Fn be the σ-field generated by W (ej) for j ≤ n. Using the law of iterated
expectation, followed by the linearity of f 7→ W (f) and (1.3.1), we have

E

(
E (F | Fn) exp

(
i

n∑
j=1

tjW (ej)

))
= E

(
F exp

(
i

n∑
j=1

tjW (ej)

))
= 0 (1.3.2)

for all t1, . . . , tn ∈ R. There exists a measurable function φ : Rn → R such that
E(F | Fn) = φ(W (e1), . . . ,W (en)) because E(F | Fn) is measurable with respect to Fn.
Let

ψ(x1, . . . , xn) := φ(x1, . . . , xn) exp

(
−1

2

n∑
j=1

x2
j

)
.

The Fourier transform of ψ is

ψ̂(t1, . . . , tn) =
1

(2π)n/2

∫
Rn
φ(x1, . . . , xn) exp

(
−1

2

n∑
j=1

x2
j

)
exp

(
i

n∑
j=1

tjxj

)
dx1 . . . dxn

= 0,

where the last equality follows from (1.3.2) and noting that the integration in (1.3.2) is
respect to a standard multivariate Gaussian measure. Since the ψ̂ = 0, we have that
φ = 0 and E(F | Fn) = 0 almost surely for all n ≥ 1, which implies that E(F | F) = 0,
where F is generated by the σ-fields Fn, n ≥ 1. Since F is F -measurable, we conclude
that F = E(F | F) = 0 almost surely.

Due to Proposition B.3.2, the Wiener chaos decomposition implies that all F ∈ L2(Ω)
has an orthogonal expansion in the form

F =
∞∑
q=0

Fq,

where Fq ∈ Hq so that Fp is orthogonal to Fq for all p 6= a. Also, F0 = E(F ).
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1.4 The Wiener-Itô Integral

In 1951 Itô [Itô51] introduced what are now known as Wiener-Itô integrals. While the
Wiener chaos was introduce earlier and was not defined in terms of these integrals, it turns
out that the elements of the Wiener chaos are Wiener-Itô integrals. In this section, we
develop the theory of these integrals in a similar fashion to Lebesgue integration, starting
on a set of elementary functions and then extending the definition using denseness, we
also derive some elementary properties that will be extended in Section 1.5.

Throughout this section we will work exclusively in the Hilbert spaceH = L2(T,B, µ),
where (T,B, µ) is a measure space and µ is a σ-finite and nonatomic measure.

Let W be an isonormal Gaussian process indexed by H. For all A ∈ B, define
W (A) := W (1A), then W (A) ∼ N (0, µ(A)) because Var(W (A)) = ‖1A‖2

H = µ(A). The
process G = {W (A) |A ∈ B, µ(A) <∞} is called Gaussian white noise or a Gaussian
random measure.

Recall from Proposition B.4.10 that the qth tensor power of H, denoted by H⊗q,
is isomorphic to L2(T q,Bq, µq). We will define the Wiener-Itô integral with respect to
Gaussian white noise, G, for functions f ∈ H⊗q as a linear operator

Iq : H⊗q → L2(Ω)

which will sometimes be denoted by

Iq(f) =

∫
T q
f(t1, . . . , tq) dW (t1) . . . dW (tq).

Note that this notation is not interpreted as the the Itô integral of f . Indeed, such an Itô
integral is not defined since the iterated integral forms a nonadapted stochastic process.
The key to avoiding this problem is to use off-diagonal simple functions as the elementary
functions in the definition of the Wiener-Itô integral.

Definition 1.4.1. A simple function on T q of the form

f(t1, . . . , tq) =
n∑

i1,...,iq=1

ai1...iq1Ai1×···×Aiq (t1, . . . , tq) (1.4.1)

is called an off-diagonal simple function if A1 . . . An ∈ {A ∈ B |µ(A) < ∞} are
disjoint and ai1...iq = 0 when ir = is for some r 6= s.

Off-diagonal simple functions are just simple functions that vanish onD := {(t1, . . . , tq) ∈
T q | ti = tj for some i = j}, set of diagonals of T q. Note that as with any simple function,
it is always possible to choose A1, . . . , An in a way that partitions T . We will assume
that all off-diagonal simple functions are in this form.

For all off-diagonal simple functions, f , given by (1.4.1), define the Wiener-Itô integral
of f as

Iq(f) :=
n∑

i1,...,iq=1

ai1...iqW (Ai1) . . .W (Aiq).

This integral is well-defined and satisfies some basic properties given below. Here, f̃
is the symmetrization of f , defined in (B.4.1). The symmetrization transforms a function
to a symmetric function, that is a function that is invariant under permutations of its
arguments.
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Proposition 1.4.2. Let H = L2(T,B, µ). For all p, q ≥ 1, if f ∈ H⊗p and g ∈ H⊗q are
off-diagonal simple functions, then:

(i) The operator Ip is linear.

(ii) Ip(f) = Iq(f̃).

(iii) E(Ip(f)) = 0.

(iv) E(Ip(f)Iq(g)) =

{
0 if p 6= q

q!〈f̃ , g̃〉H⊗q if p = q.

Proof. To show (i), note that for all off-diagonal simple functions, f, g, defined on the
partitions of T , {Ai}ni=1 and {Bi}mj=1, respectively, we can write both f, g as off-diagonal
simple functions on the partition fo T formed by the set Ai ∩Bj. Then, (i) follows from
the linearity of f 7→ W (f).

Next, we prove (ii). If f = 1Ai1×···×Aiq , then its symmetrization is given by

f̃ =
1

q!

∑
σ∈Sq

1Ai1×···×Aiq (tiσ(1) , . . . , tiσ(q))

=
1

q!

∑
σ∈Sq

1Aiσ(1)×···×Aiσ(q) (t1, . . . , tq).

Then

Iq(f̃) =
1

q!

∑
σ∈Sq

W (Aiσ(1)) . . .W (Aiσ(q)),

where each of the q! summands are equal to W (Ai1) . . .W (Aiq), so

Iq(f̃) = W (Ai1) . . .W (Aiq) = Iq(f).

As every off-diagonal simple function can be written as a linear combination of the indi-
cator functions f , then (ii) follows from (i).

Using the facts that W is an isonormal Gaussian process and {Ai}ni=1 is a partition of
T , we have E(W (Air)W (Ais)) = µ(Air∩Ais) = 0, for all r 6= s. Thus, W (Ai1), . . . ,W (Aiq)
are mutually independent and

E(W (Ai1) . . .W (Aiq)) = E(W (Ai1)) . . .E(W (Aiq)) = 0,

So for any off-diagonal simple function, f , we have E(Iq(f)) = 0, which proves (iii).
Finally, we prove (iv). First, we will deal with the p = q case. Let f, g ∈ H⊗q be

off-diagonal simple functions of the form given by (1.4.1). As in the proof of (i), we can
assume without loss of generality that f, g are both defined on the partition {Ai}ni=1.
Furthermore, we can assume that f, g are symmetric functions due to (ii), so that

f(t1, . . . , tq) =
n∑

i1,...,iq=1

ai1...iq1Ai1×···×Aiq (t1, . . . , tq),

g(t1, . . . , tq) =
n∑

i1,...,iq=1

bi1...iq1Ai1×···×Aiq (t1, . . . , tq),
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where ai1...iq = aiσ(1)...iσ(q) and bi1...iq = biσ(1)...iσ(q) for all permutations σ ∈ Sq. Then,

Iq(f) = Iq(f̃) = q!
∑

1≤i1<···<iq≤n

ai1...ipW (Ai1) . . .W (Aiq), (1.4.2)

and a similar result holds for g. By independence shown in the proof of (iii), we have
that

E((W (Ai1) . . .W (Aiq))
2) = E(W (Ai1)

2) . . .E(W (Aiq)
2)

= µ(A1) . . . µ(An). (1.4.3)

Now using Equation 1.4.2 and 1.4.3, we have

E(Iq(f)Iq(g)) = E(Iq(f̃)Iq(g̃))

= E

q! ∑
1≤i1<···<iq≤n

ai1...iqW (Ai1) . . .W (Aiq)


q! ∑

1≤i1<···<iq≤n

bi1...iqW (Ai1) . . .W (Aiq)


= p!2

∑
1≤i1<···<iq≤n

ai1...iqbi1...iqµ(Ai1) . . . µ(Aiq)

= p!〈f̃ , g̃〉H⊗q .

In the case where p 6= q, for all 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ ij < · · · <
jq ≤ n, the fact that the sets {Ai}ni=1 are disjoint implies that when we get the term
E(W (Ai1)...W (Aip)W (Aj1)W (Ajq)), in the above calculation we can factor out at least
one term E(W (Ar)) = 0. Hence, Ip(f)Iq(g) = 0.

As a result of Proposition 1.4.2 (iii), we can always assume without loss of generality
that f ∈ H⊗q is a symmetric function, so that f ∈ H�q, the qth symmetric tensor power
of H (see Definition B.4.6). By Proposition B.4.10, H�q is isomorphic to L2

s(T
q, Bq, µq),

the subspace of symmetric functions in L2(T q, Bq, µq).
To extend this Wiener-Itô integral to all f ∈ H⊗q, we show that the set of off-diagonal

simple functions are dense using the fact the µ is a nonatomic measure. The following
lemma is from Kuo [Kuo06].

Lemma 1.4.3. Let H = L2(T,B, µ). Let f ∈ H⊗q, then there exists a sequence of
off-diagonal simple functions (fn)n≥1 such that ‖fn − f‖H⊗q → 0 as n→∞.

Proof. Let f ∈ H⊗q and Dδ := {t ∈ T q| ‖t− d‖ < δ for all d ∈ D}, where D is the
diagonal of Tm. Since µ is a nonatomic measure, for all ε > 0, there exists a δ > 0 such
that ∫

Dδ

f 2 dµq <
ε

2
.

On Dc
δ = Tm\Dδ, there also exist simple functions fε, such that∫

Dcδ

(f − fε)2 dµq <
ε

2
.
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Now δ and fε can be chosen such that fε vanished on Dδ, so that it is an off-diagonal
simple function, and so that the above two equations imply∫

T q
‖f − fε‖2, dµ < ε.

Taking a sequence of ε approaching 0 gives the required approximating sequence fk =
fε.

Let g ∈ H⊗q be an off-diagonal simple function. Using the orthogonality property in
Proposition 1.4.2 (iv) and the triangle inequality

‖Iq(g)‖2
L2(Ω) = q! ‖g‖2

H⊗q ≤ q! ‖g‖2
H⊗q .

Now let f ∈ H⊗q. By Lemma 1.4.3, there exists a sequence of off-diagonal simple functions
(fn)n≥0 that converges to f in H⊗q. Using linearity and the above inequality, ‖Iq(fn) −
Iq(fm)‖ ≤ q!‖fn− fm‖ → 0 as n,m→∞. So (Iq(fn))n≥1 is a Cauchy sequence in L2(Ω).
Since this space is complete, the limit of the sequence exists.

Definition 1.4.4. Let H = L2(T,B, µ). For all f ∈ H⊗q, we define the Wiener-Itô
integral of order q by

Iq(f) := lim
n→∞

Iq(fn),

where (fn)n≥1 is a sequence of off-diagonal simple functions such that ‖fn − f‖H⊗q → 0
as n→∞.

Using the denseness of the off-diagonal simple functions, the properties of Wiener Itô
integrals listed in Proposition 1.4.2 can be extended to any f ∈ H⊗q.

Proposition 1.4.5. Let H = L2(T,B, µ). The conclusions of Proposition 1.4.2 hold for
all f ∈ H⊗p and g ∈ H⊗q.

Next, we will show a product formula for Wiener-Itô integrals. In the theorems below,
f ⊗r g is the rth contraction of f ∈ H⊗p and g ∈ H⊗q defined by

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫
T r
f(t1, . . . , tp−r, s1, . . . , sr)

g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr) dµ(s1) . . . dµ(sr).

See Appendix B.5 for more details. The following lemma will be used to derive the
product formula and the proofs are based on [Nua06].

Lemma 1.4.6. Let H = L2(T,B, µ). If q ≥ 1 and f ∈ H�q, then

Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g).

Proof. See [Nua06].

Theorem 1.4.7 (Product formula). Let H = L2(T,B, µ). If p, q ≥ 1, f ∈ H�p and
g ∈ H�q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g).
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Proof. See [Nua06].

There are several alternative proofs of the product formula, all of which are quite in-
volved. For example, see Proposition 6.4.1 in [PT11] which uses combinatorial properties
of Wiener-Itô integrals or Theorem 2.7.10 in [NP12] which uses Malliavin calculus.

The product formula will often be used to compute the square of Wiener-Itô integrals
in later chapters.

Corollary 1.4.8. Let H = L2(T,B, µ). If q ≥ 1 and f ∈ H�q, then

Iq(f)2 = q! ‖f‖2
H⊗q +

q−1∑
r=0

r!

(
p

r

)2

I2q−2r(f ⊗r f).

Proof. Since I0 is the identity map for constants, I0(f⊗r f) = I0

(
q! ‖f‖2

H⊗q
)

= q! ‖f‖2
H⊗q .

Then the result follows from Theorem 1.4.7.

We end this section with a fundamental result that relates Wiener-Itô integrals to
Hermite polynomials and shows that these integrals are an isomorphism from the qth
symmetric tensor power of H onto the qth Wiener chaos. From Appendix B.4, recall that
the inner product on H⊗q is q! 〈·, ·〉H⊗q and the qth tensor power in our setting is given
by f⊗q(t1, . . . , tq) = f(t1) . . . f(tq) (see Proposition B.4.10).

Theorem 1.4.9. Let H = L2(T,B, µ). Let W be an isonormal Gaussian process indexed
by H, then for all q ≥ 1 and f ∈ H with ‖f‖H = 1, we have

Hq(W (f)) = Iq(f
⊗q), (1.4.4)

where f⊗q is the qth tensor power of f . Moreover, Iq : H�p → Hq is an isomorphism.

Proof. Observe that for all q ≥ 1,

(f⊗q ⊗1 f)(t1, . . . , tq−1) =

∫
T 2

f(t1) . . . f(tq−1)f(s)2 dµ(s) = f⊗q−1(t1, . . . , tq−1), (1.4.5)

where f ∈ H such that ‖f‖2
H.

We will prove (1.4.4) by induction. In the case when q = 1, W (f) = I1(f). As-
sume that (1.4.4) holds for q. Using Lemma 1.4.6, followed by (1.4.5) and the induction
hypothesis, we have

Iq+1

(
f⊗q+1

)
= Iq(f

⊗q)I1(f)− qIq−1(f⊗q ⊗1 f)

= Hq(W (f))W (f)− qHq−1(W (f))

= Hq+1(W (f)),

where we used Proposition 1.2.3 (iv) in the last equality. This completes the proof of
(1.4.4).

To prove the second statement, it suffices to show that Iq is an isometry and onto.
Proposition 1.4.2 (iv) and Proposition 1.4.5 gives us the isometry property E(Ip(f)Iq(g)) =
〈f, g〉H�q , for all f, g ∈ H⊗q . It also implies that Iq(g) is orthogonal to Ip(f

⊗p) =
Hp(W (f)), for all p 6= q, f ∈ H with ‖f‖H = 1 and g ∈ H�q. Since {Hp(W (f)) | f ∈ H, ‖f‖H = 1}
generates Hp, Iq(H�p) is orthogonal to Hp for all p 6= q. Therefore, by Theorem 1.3.2,
Iq(H�p) ⊆ Hq.

Conversely, let F ∈ Hq. Then F is the L2 limit of linear combinations of functions of
the form Hq(W (f)) = Iq(f

⊗q), where f ∈ H with ‖f‖H = 1. However, by the isometry
property, E(Iq(f)2) = ‖f‖2

H�q , so that Iq(H�p) is closed under taking linear combination
and limits and F ∈ Iq(H�p). Thus, Hq ⊆ Iq(H�p).
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1.5 Relation Between Wiener-Itô Integrals and the

Wiener Chaos

Let (ei)i∈N be an orthonormal basis for the underlying Hilbert space H. We will now find
a orthonormal basis for the qth Wiener chaos.

Definition 1.5.1. An infinite sequence a = (a1, a2, a3, . . . ), where ai ∈ N and only a
finite number of elements are nonzero, is called a multi-index. We use the notation
|a| :=

∑∞
i=1 ai and a! :=

∏∞
i=1 ai!. The set of all multi-indexes, a, such that |a| = q will

be denoted by Aq, and the set of all multi-indexes will be denoted by A.

Define the random variable

Ea :=
1√
a!

∞∏
i=1

Hai(W (ei)), (1.5.1)

where a is a multi-index. Note that this is actually a finite product as only finitely many
terms are different from 1. Moreover, this definition does not depend on the choice of
orthonormal basis in the sense that (W (ei))i≥1 will always be a sequence of independent
and identically distributed standard Gaussian random variables.

The following proof that (Ea)a∈Aq is a orthonormal basis of the qth Wiener chaos is
partly inspired by related proofs in [Nua09, Maj81].

Lemma 1.5.2. Let Pq be the closure in L2(Ω) of the set

{p(W (e1), . . . ,W (en)) | p is a polynomial, deg p ≤ q, (ei)
n
i=1 ⊆ H orthonormal set} .

Then,

Pq =

q⊕
i=0

Hi.

Consequently, Ea ∈ Hq when |a| = q.

Proof. Choose f ∈ H with ‖f‖H = 1, and let (ei)i∈N be an orthonormal basis for H with
e1 = f . Let a, b be multi-indices with |a| = q and |b| ≤ r, where r < q, and define

Fb :=
∞∏
i=1

W (ei)
bi . (1.5.2)

Since Ea and Fb are products of finitely many terms, we have

E(EaFb) =
1√
a!

∞∏
i=1

E
(
Hai(W (ei))W (ei)

bi
)
. (1.5.3)

Now note that there exists at least one i ≥ 1 such that bi < ai, and by Lemma 1.2.4, we
can write W (ei)

bi as a linear combination of Hermite polynomials with degree less than
or equal to bi and strictly less than ai. Therefore, using Proposition 1.2.3 (v) in (1.5.4)
gives

E(EaFb) = 0. (1.5.4)
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We will now prove the first statement. It is obvious that
⊕r

i=1Hi ⊆ Pr. In the
particular case where a is such that a1 = q and ai = 0 for all i 6= 1, (1.5.4) implies that
for all q > r, Fb is orthogonal to Hq(W (h)), so it is also orthogonal to Hq. By definition,
the span of {Fb | |b| = r} is dense in Pr, so if p ∈ Pr, then p is orthogonal to Hq(W (h))
for all q > r, thus Pr ⊆

⊕r
i=1Hi.

We now prove the second statement. In the particular case where r = q − 1 and a
is a multi-index with |a| = q, (1.5.4) implies that Ea is orthogonal to Fb. Using density
again, we have that Ea is orthogonal to Pq−1. But clearly, Ea ∈ Pq. Then using (1.5.2),
we have Ea ∈ Pq\Pq−1 = Hq.

Theorem 1.5.3. The sequence (Ea)a∈A is an orthonormal basis of L2(Ω). For all q ∈ N,
(Ea)a∈Aq is an orthonormal basis of Hq.

Proof. Let a, b be multi-indices. Using Proposition 1.2.3 (v), we have

E(EaEb) =
∞∏
i=1

1√
a!b!

E (Hai(W (ei))Hbi(W (ei))) =

{
0 if a 6= b

1 if a = b.

This proves that the elements of (Ea)a∈Aq are orthonormal. Now we need to show that
the span of (Ea)a∈A is dense in L2(Ω). Again, by Proposition B.2.2, it suffices to show
that if E(FEa) = 0 for all a ∈ A, then F = 0 almost surely.

By taking a as the multi-index where ai = q and 0 elsewhere, the assumption implies
that E(FHq(W (ei))) = 0 for all q ∈ N and i ≥ 1. From this point, we can argue similarly
as the proof of Theorem 1.3.2 to show that F = 0. This completes the proof of the first
statement.

Next, to show that (Ea)a∈Aq is an orthonormal basis of Hq, it only remains to show
that (Ea)a∈Aq is total. Fix q ∈ N. Since (Ea)a∈A is an orthonormal basis for L2(Ω), we
have in particular that all F ∈ Hq can be written as

F =
∑
a∈A

E(FEa)Ea =
∑

a∈A\Aq

E(FEa)Ea +
∑
a∈Aq

E(FEa)Ea.

By Lemma 1.5.2 and the orthogonality of the Wiener chaos, applying the projection onto
Jq to the above equation yields

F =
∑
a∈Aq

E(FEa)Ea.

Therefore, Proposition B.2.2 says that (Ea)a∈A is total in Hq.

We are now in a position to show that the elements of the Wiener chaos are Wiener-Itô
integrals. We will use the notation and concepts summarized in Appendix B.4.

Let H�q be the qth symmetric tensor product of H and a be a multi-index with
|a| = q. Define the linear operator

Ĩq : H�q → L2(Ω),

by the map

Ĩq

(
1√
a!

sym
(
e⊗a
))

=
1√
a!

∞∏
i=1

Hai(W (ei)).
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By Proposition B.4.7 and Theorem 1.5.3, Ĩq actually maps the orthonormal basis of H�q
onto the orthonormal basis of the qth Wiener chaos, Hq. Therefore, Iq has a continuous
linear extension that is a bounded operator and which is also a Hilbert space isomorphism
from H�q onto Hq. This extension will continue to be denoted as Ĩq and is known as a
Wiener-Itô integral or a multiple stochastic integral.

The Wiener-Itô integral introduced in Section 1.4 is a special case of Ĩq. Note however,

that Ĩq is a generalization of Iq as it allows us to define the Wiener-Itô integral for any real
separable Hilbert space not necessarily an L2(T,B, µ). So after the proposition below, we
will denote them both as Iq and the underlying Hilbert space will be assumed to be any
real separable Hilbert space H, unless otherwise stated.

Proposition 1.5.4. Suppose that H = L2(T,B, µ), where (T,B, µ) is a measure space
and µ is a σ-finite and nonatomic measure with orthonormal basis (ei)i∈N. Then for all

q ∈ N, the Wiener Itô integral, Iq from Definition 1.4.4 coincides with Ĩq.

Proof. Firstly, we will compute the rth contraction of e⊗aii and e
⊗aj
j . For all i 6= j and

r = 1, . . . , ai ∧ aj, using the orthogonality of ei and ej, we have

e⊗aii ⊗r e
⊗aj
j = e⊗ai−ri e

⊗aj−r
j

(∫
T

ei(s)ej(s) dµ(s)

)r
= 0.

But in the case when r = 0, the contraction reduces to the tensor product, e⊗aii ⊗ e⊗ajj .
Therefore,

Iai
(
e⊗aii

)
Iaj

(
e
⊗aj
j

)
= Iai+aj

(
sym

(
e⊗aii ⊗ e⊗ajj

))
, (1.5.5)

because all the summands in the product formula from Theorem 1.4.7 vanish, except
when r = 0.

Using Theorem 1.4.9 and repeated applications of (1.5.5) gives

1√
a!

∞∏
i=1

Hai(W (ei)) =
1√
a!

∞∏
i=1

Iai(e
⊗ai
i )

= Iq

(
1√
a!

sym
(
e⊗a
))

,

for all multi-indices a with |a| = q. Thus, we see that in the case where H = L2(T,B, µ),

Ĩq coincides with Iq on an orthonormal basis, and by boundedness, on all of Hq.

Most of the results about Wiener-Itô integrals in Section 1.4 are true for Iq in the
general case where H is any real separable Hilbert space. Since, H is isomorphic to
L2(T,B, µ), we can use an isometry argument to extend the product formula. These
results are summarized the following proposition.

Proposition 1.5.5. Let H be any real separable Hilbert space. The conclusions of Propo-
sition 1.4.2 hold for all f ∈ H�p and g ∈ H�q. The conclusions of Theorem 1.4.7 hold
for all f ∈ H�p and g ∈ H�q, however the contraction, f ⊗r g, is given by Definition
B.5.1. The conclusions of Theorem 1.4.9 hold for all f ∈ H�q.

Thus, we can give a simple criterion for the convergence of Wiener-Itô integrals, Iq(fn),
in terms of the convergence of fn.
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Proposition 1.5.6. Let q ≥ 1 and f, fn ∈ H�q for all n ≥ 1. If ‖fn − f‖H⊗q → 0, then

Iq(fn)
L2(Ω)−−−→ Iq(f).

Proof. This immediately follows from the isometry property ‖Iq(fn)− Iq(f)‖2
L2(Ω) =

q! ‖fn − f‖2
H⊗q .

Now combining Theorem 1.5.4 with the Wiener chaos decomposition given in Theorem
1.3.2, we see that the elements of the Wiener chaos are Wiener-Itô integrals. Thus, all
F ∈ L2(Ω) have an expansion in Wiener-Itô integrals.

Theorem 1.5.7 (Wiener chaos expansion). For any random variable F ∈ L2(Ω), for
all q ∈ N, there exists fq ∈ H�q, such that

F =
∞∑
q=0

Iq(fq), (1.5.6)

where I0(f0) = E(X). In particular, we can choose H = L2(T,B, µ), where (T,B, µ)
is a measure space and µ is a σ-finite and nonatomic measure, in which case fq is a
symmetric function in q variables that is square integrable with respect to µ.

In the next chapter, we will give an explicit formula that can be used to computer
the Wiener-Itô expansion in terms of Malliavin derivatives.
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Chapter 2

Malliavin Calculus

The origins of Malliavin calculus began in a paper by P. Malliavin [Mal76] in which he
used probabilistic techniques to prove conditions for the smoothness of solutions to a
stochastic differential equation, a result known as Hörmander’s theorem. His method
used derivatives of random variables and an integration by parts formula. Since then,
the theory has been extensively developed, for example, see Malliavin [Mal97], Nualart
[Nua06], or Bogachev [Bog10].

In brief, Malliavin calculus is an infinite-dimensional differential calculus with opera-
tors acting on functions of Gaussian processes. Since Malliavin calculus originated with
its applications to stochastic differential equations, we will see that there are many ana-
logues to the theory of partial differential equations on Sobolev spaces. Our interest in
Malliavin calculus is to study limit theorems on the Wiener chaos. We will prove these
limit theorems in Chapter 3, where the key insight is that Stein’s method allows us to
bound the distance between probability measures by use of differential operators, so that
Malliavin calculus can then be used to explicitly compute these bounds.

In this chapter, we will introduce the three Malliavin operators, the derivative, di-
vergence and Ornstein-Uhlenbeck operators. This chapter mostly follows [Nua06] and
[NP12].

2.1 Malliavin Derivative

Recall that W = (W (f))f∈H is an isonormal Gaussian process indexed by a real separable
Hilbert spaceH. In this section, we will define the derivative for a class of smooth random
variables and outline some of its properties.

Let C∞(Rn) be the space of all infinitely differentiable functions of Rn. Let C∞p (Rn)
denote the space of functions g ∈ C∞(Rn) where g and all its partial derivatives have at
most polynomial growth. Similarly, if g and all its partial derivatives are bounded, it will
be denoted as C∞b (Rn).

The condition that g ∈ C∞p (Rn) means that for all multi-indexes a, there exists
constants c, da > 0 such that ∣∣∣∣ ∂|a|∂xa

g(x)

∣∣∣∣ < c(1 + |x|)da

(see Definition 2.3.15 [Gra08]).

19
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Definition 2.1.1. A random variable F : Ω→ Rn is smooth if it has the form

F = g(W (f1), . . . ,W (fn)),

where g ∈ C∞p (Rn), and f1, . . . fn ∈ H. The set of smooth random variables is denoted
S. The set of F where g ∈ C∞b (Rn) instead is denoted by Sb.

Lemma 2.1.2. The spaces S and Sb are dense in L2(Ω).

Proof. The span of {Hq(W (f)) | q ∈ N, f ∈ H, ‖f‖H = 1} is a subset of S, and dense in
L2(Ω) due to the Wiener chaos decomposition in Theorem 1.3.2. Hence, S is also dense
in L2(Ω).

The space of functions in C∞(Rn) with compact support, C∞0 (Rn), is a subset of
C∞b (Rn). But since C∞0 (Rn) is dense in L2(Rn) (see Exercise 2.2.5 in [Gra08]), C∞b (Rn)∩
L2(Rn) is also dense. Then the second statement follows from the fact that we can use
Theorem 1.5.3 to estimate any F ∈ L2(Ω) by polynomial functions of W (f1), . . . ,W (fn),
where f1, . . . , fn ∈ H.

We will begin by defining the derivative only for F ∈ S. This requires some basic
concepts about Hilbert space valued functions as outlined in Appendix B.1. The space
L2(Ω → H) is the set of H-valued random variables, X, that are F -measurable such
that E(‖X‖2

H) < ∞. The inner product on this space is 〈X, Y 〉L2(Ω→H) = E(〈X, Y 〉H).
We will see in Section 2.2 that in a particular case, a H-valued random variable can be
interpreted as a R-valued stochastic process.

Definition 2.1.3. The operator D : S → L2(Ω→ H) defined by

DF =
n∑
i=1

∂g

∂xi
(W (f1), . . . ,W (fn))fi,

is known as the Malliavin derivative.

We often write expressions such as 〈DF, f〉H. Note that DF is not an element of H,
but DF (ω) ∈ H for all ω ∈ Ω, so we should interpret 〈DF, f〉H : Ω → R as a random
variable such that ω 7→ 〈DF (ω), f〉H .

The polynomial growth condition in Definition 2.1.1 ensure that for all F ∈ S and
f ∈ H, all moments of F and 〈DF, f〉H are finite.

Example 2.1.4. Continuing on from Example 1.1.4, have Brownian motion written as
an isonormal Gaussian process Bt := W (1[0,t]). Then D sin(Bt) = cos(Bt)1[0,t].

Clearly, the Malliavin derivative is a linear operator, although it is unbounded. How-
ever, it is possible to extend the domain of the derivative by showing that it is a closable
operator. It may also be helpful to review the definitions and properties about closed
and closable operators as listed in Appendix A.2. First, we need the following lemma.

Lemma 2.1.5 (Integration by parts). Let F ∈ S and f ∈ H, then

E(〈DF, f〉H) = E(FW (f)).
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Proof. We have F = g(X), where g ∈ S and X := (W (f1), . . . ,W (fn)) is a cen-
tered multivariate normal random variable with covariance matrix Σ. Using the spec-
tral decomposition Σ = UDUT , we can write X = UD1/2Z where Z is a vector of
n independent and identically distributed standard normal random variables. Thus,
F = g(UD1/2Z) = h(Z), where h ∈ S. Since h(Z) = h(W (e1), . . . ,W (en)), for
some orthogonal set {e1, . . . , en} ⊆ H, we can assume without loss of generality that
F = f(W (e1), . . . ,W (en)), where {e1, . . . , en} ⊆ H is an orthonormal set and e1 = f .

Now (W (e1), . . . ,W (en)) is a n dimensional standard normal distribution, so we have

E(〈DF, h〉H) = E

(
∂f

∂x1

(W (e1), . . . ,W (en))

)
=

1

(2π)n/2

∫
Rn

∂f

∂x1

(x1, . . . , xn) exp

(
−1

2

n∑
i=1

x2
i

)
dx1 . . . dxn

=
1

(2π)n/2

∫
Rn
x1f(x1, . . . , xn) exp

(
−1

2

n∑
i=1

x2
i

)
dx1 . . . dxn

= E(FW (e1))

= E(FW (f)),

where the usual integration by parts formula has been used in the third line.

Proposition 2.1.6 (Closability). The Malliavin derivative D : S ⊆ Lp(Ω)→ Lp(Ω→
H) is a closable operator.

Proof. It is clear from Definition 2.1.3 that the product rule for the partial derivative
implies that the Malliavin derivative also satisfies the product ruleD(FG) = FDG+GDF
for all F,G ∈ S. Combining this Lemma 2.1.5, we get the formula

E(G 〈DF, f〉H) = −E(F 〈DG, f〉H) + E(W (f)FG), (2.1.1)

for all f ∈ H.
We will use Proposition A.2.7 (ii) to show that D is closable. Suppose that (Fn)n≥1 ⊆

S is a sequence that converges to 0 in L2(Ω) and (DFn)n≥1 converges to some G ∈
L2(Ω→ H). Let H ∈ Sb and f ∈ H.

The convergence of (DFn)n≥1 in L2(Ω → H) means that E
(
‖DFn −G‖2

H
)
→ 0 as

n → ∞. Then using the Cauchy-Schwarz inequality, E
(
|〈DFn −G, f〉H|

2) → 0 as n →
∞, for all f ∈ H. So we have that 〈DFn, h〉H → 〈G, f〉H and H 〈DFn, f〉H → H 〈G, f〉H
in L2(Ω) as n→∞, since H is bounded. Then using Proposition A.3.2 yields

E(H 〈G, f〉H) = lim
n→∞

E(H 〈DFn, f〉H)

= lim
n→∞

−E(Fn 〈DH, f〉H) + E(W (f)FnH)

≤ lim
n→∞

E(|Fn|2)1/2 E(|W (f)H − 〈DH, f〉H |
2)1/2

using Equation 2.1.1 followed by Hölder’s inequality. Now W (f)H ∈ L2(Ω) since H is
bounded and 〈DH, f〉H ∈ L2(Ω) by, for example, the Cauchy-Schwarz inequality. Also,
Fn → 0 in L2(Ω) by Proposition A.3.3, therefore E(H 〈G, f〉H) = 0 for all H ∈ Sb and
f ∈ H. Hence, 〈G, f〉H = 0 almost surely, in particular for all f = ei, where (ei)i≥1 is a
orthonormal basis for H. So G = 0 almost surely.
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SinceD is a closable operator, we can construct its closed extension. Using Proposition
A.2.5 (iii), the domain of the closed extension, denoted D1,2 will be the closure of S with
respect to the norm

‖F‖2
D1,2 = E(F 2) + E(‖DF‖2

H), (2.1.2)

and for all Fn ∈ D1,2 converging to F ∈ L2(Ω) with DFn converging in to some G ∈
L2(Ω→ H), we define DF = G. From now on, when we refer to the Malliavin derivative
we mean the the closed extension of the Malliavin derivative, which we will continue to
denote as D.

The Malliavin derivative satisfies a chain rule.

Proposition 2.1.7 (Chain rule). Let g : R→ R be a continuously differentiable func-
tion with bounded partial derivatives and F ∈ D1,2, then D(g(F )) = g′(F )DF .

Proof. We will give a sketch of this proof, as a complete justification requires various
technical properties of approximate identities (see Section 1.2.4 in [Gra08]).

Let F ∈ S, so we can write

F = f(W (f1, . . . , fm)),

for some f1, . . . , fm ∈ H, where f ∈ C∞p (Rm). Let (φε)ε>0 be an approximate identity,
then we can let gε := g ∗ φε where gε is infinitely differentiable with bounded partial

derivatives and gε
L2

−→ g. Now since gε ◦ fn ∈ C∞p (Rm), using the usual chain rule we have

D(gε(F )) =
m∑
i=1

∂(gε ◦ f)

∂xi
(W (f1), . . . ,W (fm))fi

= g′ε(F )DF.

Now since g′ has bounded derivatives and F ∈ S, we can apply the dominated conver-
gence theorem see that in the L2(Ω → H) norm, ‖(g′ε(F )− g′(F ))DF‖L2(Ω→H) → 0, as

ε→ 0. So we have that gε(F )→ g(F ) in L2(Ω) and g′ε(F )DF → g′(F )DF in L2(Ω→ H)
as ε→ 0. This proves the chain rule for F ∈ S.

To extend it to all F ∈ D1,2, we note since D is closed, there exists a sequence
(Fn)n≥1 ⊆ S such that Fn → F in L2(Ω) and DFn → DF in L2(Ω→ H) as n→∞. The
chain rule is satisfied for all Fn ∈ S and it can be shown that g′(Fn)DFn → g′(F )DF
in L2(Ω → H) as n → ∞. Therefore, due to D being a closed operator, D(g(F )) =
g′(F )DF .

The next proposition shows that all Wiener-Itô integrals, Iq(f) for f ∈ H�q, are in
the domain of the Malliavin derivative D1,2, and we also provides a characterization for
D1,2.

Proposition 2.1.8. Let q ∈ N and H be a real separable Hilbert space. Suppose that
F ∈ L2(Ω) with Wiener-Itô expansion given by (1.5.6) and G ∈ L2(Ω) has a similar
expansion. Then:

(i) For all f ∈ H�q, Iq(f) ∈ D1,2.
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(ii) F ∈ D1,2 if and only if

E(‖DF‖2
H) =

∞∑
q=1

qq! ‖fq‖2
H⊗q <∞.

(iii) If F,G ∈ D1,2, then

E (〈DF,DG〉H) =
∞∑
q=0

qq! 〈f, g〉H⊗q .

Proof. Since D is closed, Proposition A.2.5 (iii) says that F ∈ D1,2 is equivalent to (2.1.2)
being finite. As F is already in L2(Ω), this reduces to the condition that E

(
‖DF‖2

H
)
<∞.

Recall the definition of Ea from (1.5.1), where (ei)i≥1 is an orthonormal basis for H.
Since Ea ∈ S, we can use Proposition 1.2.3 (iii) to compute the derivative

DEa =
1√
a!

∞∑
j=1

∞∏
i=1
i 6=j

Hai(W (ei))ajHaj−1(W (ej))ej.

Next, note that sums and products over the elements of a multi-index are finite and
that E(h1(W (ei))h2(W (ej))) = E(h1(W (ei))) E(h2(W (ej))) because W (ei) and W (ej)
are independent. Thus, taking the L2(Ω→ H) norm gives

E
(
‖DEa‖2

H
)

=
1

a!

∞∑
j=1

aj

∞∏
i=1
i 6=j

E
(
Hai(W (ei)

2)
)

E
(
Haj−1(W (ej)

2)
)

=
1

a!

∞∑
j=1

∞∏
i=1
i 6=j

ajai!(aj − 1)!

= |a|, (2.1.3)

where we have used Proposition 1.2.3 (v) at the second line.
Now let Anq := {a ∈ Aq | ai = 0 for all i > n}, F := Fn and

Fn :=
∑
a∈Anq

E(Iq(f)Ea)Ea.

For a 6= b, the inner product E
(
〈DEa, DEb〉2H

)
= 0, because we can use similar arguments

as above to see that in each product we have at least one term E (Hai(W (ei))Hbi(W (ei))) =
0 since there is at least one i ≥ 1 such that ai 6= bi. Therefore, DEa is orthogonal to DEb
in L2(Ω→ H) if a 6= b, so we have

E (‖DFn‖)2
H =

∑
a∈Anq

E(Iq(f)Ea)
2 E(‖DEa‖2

H)

= q
∑
a∈Anq

E(Iq(f)Ea)
2, (2.1.4)

where (2.1.3) is used at the last equality.
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Recall that Iq(f) ∈ Hq and (Ea)a∈Aq is a orthonormal basis for Hq due to Proposition
1.5.3, so

‖Iq(f)‖L2(Ω) =
∑
a∈Aq

E(Iq(f)Ea)
2 <∞. (2.1.5)

Hence, by taking n → ∞ in (2.1.4), and noting that Fn → F in L2(Ω), the fact that D
is closed implies that

DIq(f) =
∑
a∈Aq

E(Iq(f)Ea)DEa. (2.1.6)

and E
(
‖DIq(f)‖2

H
)

= q ‖Iq(f)‖L2(Ω) <∞. Thus, Iq(f) ∈ D1,2 for all f ∈ H�q. Using the
orthogonality property for Wiener-Itô integrals, we also have

E
(
‖DIq(f)‖2

H
)

= qq! ‖f‖H⊗q . (2.1.7)

Next, we prove (ii). Now let F ∈ L2(Ω) with Wiener chaos expansion given by (1.5.6)
and

Fn :=
n∑
q=0

Iq(fq).

Now since DEa and DEb are orthogonal for a 6= b, it is clear from (2.1.6) that DIp(f)
and DIq(f) are orthogonal in L2(Ω→ H) when p 6= q, so we have

E
(
‖DFn‖2

H
)

=
n∑
q=0

E
(
‖DIq(fq)‖2

H
)
.

Now take n→∞, by using 2.1.7, noting that Fn → F in L2(Ω) and D is closed, we get

E(‖DF‖2
H) =

∞∑
q=1

qq! ‖fq‖2
H⊗q .

So F ∈ D1,2 if and only if the above expression is finite, which proves (ii).
Finally, we prove (iii). Define Gn, G ∈ L2(Ω) in a similar way as F . Then using

orthogonality again, we have

E(〈DFn, GFm〉H) =
n∧m∑
q=0

E
(
〈DIq(fq), DIq(gq)〉H

)
.

Now take n → ∞ and then m → ∞. In (ii), we have shown that if F ∈ D1,2, then
DFn → DF in L2(Ω → H). Since F,G ∈ D1,2 by assumption and strong convergence
implies weak convergence in L2(Ω → H), the left hand side converges E(〈DF,GF 〉H).
On the other hand, it can be shown using the very similar arguments as in (2.1.4) and
(2.1.5) that E

(
〈Iq(f), Iq(g)〉H

)
= qq! 〈f, g〉H⊗q , and so (iii) is established.

Also, it is clear from the above proof that the derivative of Iq(f) is an element of
Hq−1 ⊗ H. It is possible to write DIq(f) = qIq−1(f) for all H⊗q, which is done in, for
example, [NP12]. But in order to make sense of this, we would need to properly define
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Iq−1(f). While we will not need to use this, further details can be found in [NP12]. In the
next section, we will see that it is quite simple to understand the DIq(f) in the case where
H = L2(T,B, µ), where (T,B, µ) is a measure space and µ is a σ-finite and nonatomic
measure.

We finish this section with a brief discussion of higher order Malliavin derivatives,
which will appear only in Section 2.2 in a small role. Recall that the Malliavin derivative
is a linear operator D : D1,2 ⊆ L2(Ω)→ L2(Ω→ H). Since the domain and codomain are
different, in order to define the iterated derivative, we note that L2(Ω→ H) is isomorphic
to L2(Ω)⊗H by Proposition B.4.9 (ii), and define the derivative on L2(Ω)⊗U , where U
is a real separable Hilbert space. Let

SU :=

{
F =

n∑
i=1

Fi ⊗ ui

∣∣∣∣∣Fi ∈ S, ui ∈ U
}
.

and note that set of all F of this form is dense in the Hilbert space L2(Ω) ⊗ U by
Proposition . Then we can define the Malliavin derivative on SU by

DF :=
n∑
i=1

DFi ⊗ ui, (2.1.8)

and higher order derivatives inductively

DpF =
n∑
i=1

DpFi ⊗ ui

for all p ≥ 1, where the derivative DpFi is defined inductively using (2.1.8) by replacing
U with H⊗p−1 and F with Dp−1F . Using a similar proof as Proposition 2.1.6, it can be
shown the derivative of order p has a closed extension

Dp : Dp,q(U) ⊆ Lq(Ω)⊗ U → Lq(Ω→ H⊗p)⊗ U ,

for all p ≥ 1, q ∈ [1,∞), where Dp,q(U) the closure of SU with respect to the norm

‖F‖qDp,q(U) = E (‖F‖qU) +

p∑
i=1

E
(
‖F‖qH⊗i⊗U

)
.

Note that D1,2(R) = D1,2 and when the case when U = R, the derivative reduces to
earlier definition, we write Dp,q instead of Dp,q(U).

2.2 Malliavin Derivative for Gaussian White Noise

In this section, we consider the Malliavin derivative in the white noise case, that is when
the underlying Hilbert space is H = L2(T,B, µ), where (T,B, µ) is a measure space and
µ is a σ-finite and nonatomic measure. We give explicit formulas for the derivative of
Wiener-Itô integrals in this case and Stroock’s formula for computing the Wiener-Itô
decomposition.

Let F ∈ D1,2. By Proposition B.4.9, DF ∈ L2(Ω → H) is isomorphic to L2(Ω × T ).
Thus, Malliavin derivative maps the random variable F into the stochastic process

DF : Ω× T → R
(ω, t) 7→ DtF (ω).

Let us define the notation f tq(t1, . . . , tq−1) := fq(t1, . . . , tq−1, t).
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Proposition 2.2.1. Let H = L2(T,B, µ). Let F ∈ L2(Ω) with Wiener-Itô expansion
given by (1.5.6). If F ∈ D1,2, then DF = (DtF )t∈T , where

DtF =
∞∑
q=1

qIq−1(f tq)

Proof. Let fq ∈ H⊗q be an off-diagonal simple function and a symmetric function. We
will compute the derivative of

Iq(fq) =
n∑

i1=1

· · ·
n∑

iq=1

ai1...iqW (Ai1) . . .W (Aiq),

where {Ai}ni=1 is a partition of T and ai1...iq = 0 when ir = is for some r 6= s.
Note that by Iq(fq) ∈ D1,2 by Proposition 2.1.8 (i), so we can apply the Malliavin

derivative which gives

DtF =

q∑
j=1

n∑
i1,...,iq=1

ai1...iqW (Ai1) . . . 1Aij (t) . . .W (Aiq)

= qIq−1(f tq).

Now the set of off-diagonal simple functions is dense L2(T,B, µ), so using similar
arguments as Proposition 2.1.8, the result can be extended to all F ∈ D1,2.

So the Malliavin derivative can be viewed as an inverse of integration in the sense
that the derivative of Iq(f) is a Wiener-Itô of order q − 1. The integrand, f tq is treated a
function of q− 1 in the integral, so that we do not integrate with respect to the variables
in the superscript.

Suppose that we can apply Malliavin derivative p times to F , that is F ∈ Dp,2, then
the pth Malliavin derivative of F would be the stochastic process

DpF : Ω× T p → R
(ω, t1, . . . , tp) 7→ Dp

t1,...,tpF (ω).

Let D∞,2 :=
⋂
p≥1 Dp,2. The following result was first proved by Stroock in [Str87]

and can be used to compute the Wiener-Itô expansion of any random variable F ∈ D∞,2.
Note that in the formula below, E(DqF ) is a function of q variables and Iq is integrates
with respect to these q variables.

Theorem 2.2.2 (Stroock’s formula). Let F ∈ D∞,2, then

F = E(F ) +
∞∑
q=1

Iq

(
1

q!
E(DqF )

)
.

Proof. Since F ∈ D∞,2 it is also in L2(Ω), so it has Wiener-Itô expansion given by (1.5.6).
When only need to compute the functions fq for q ≥ 1. Now applying Proposition 3.3 q
times we get

Dq
t1,...,tqF =


∞∑
p=q

p!

(p− q)!
Ip−q(f

t1,...,tq
p ) if p ≤ q

0 if p > q.
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Now take expectations of both sides using by Proposition 1.4.2 (iii), we have E(Iq(f)) = 0
for all q 6= 0. Thus,

E(Dq
t1,...,tqF ) = q!I0(f t1,...,tqq ) = q!f t1,...,tqq

since I0 is the identity map.

Example 2.2.3. Continuing on from Example 1.1.4, we have Brownian motion written
as an isonormal Gaussian process Bt := W (1[0,t]). We will find the Wiener-Itô expansion
of F := B3

1 . First, compute the derivatives

Dt1(B
3
1) = 3B2

11[0,1](t1)

D2
t1,t2

(B3
1) = 6B11[0,1]2(t1, t2)

D3
t1,t2,t3

(B3
1) = 61[0,1]3(t1, t2, t3),

and all higher derivatives are zero. Applying Theorem 2.2.2 and noting that B1 ∼ N (0, 1),
we have

f1(t1) = 31[0,1](t1)

f2(t1, t2) = 0

f3(t1, t2, t3) = 1[0,1]3(t1, t2, t3).

Also, E(B3
1) = 0. Therefore, the Wiener-Itô expansion of F is

B3
1 = I1

(
31[0,1]

)
+ I3

(
1[0,1]3

)
.

2.3 Divergence Operator and Ornstein-Uhlenbeck Op-

erator

Recall that S is dense in L2(Ω) by Lemma 2.1.2. Thus, Malliavin operator D : D1,2 ⊆
L2(Ω) → L2(Ω → G) is densely defined and closed linear operator so that Proposition
A.2.9 can be used to define its adjoint.

Definition 2.3.1. Let δ : dom(δ) ⊆ L2(Ω→ H)→ L2(Ω) be defined for u ∈ dom(δ) by
the duality property

E(Fδ(u)) = E(〈DF, u〉H), (2.3.1)

for all F ∈ D1,2, where dom(δ) is the set of u ∈ L2(Ω → H) such that there exists a
constant c(u) satisfying

|E(〈DF, u〉H)| ≤ c(u) ‖F‖L2(Ω) , (2.3.2)

for all F ∈ D1,2. We call δ the divergence operator.

Note that (2.3.1) is equivalent to 〈F, δ(u)〉L2(Ω) = 〈DF, u〉L2(Ω→H), which is the stan-
dard definition of an adjoint, while (2.3.2) is equivalent to (A.2.1), which is the condition
that is required for δ to be uniquely defined closed operator.

Suppose that F ∈ L2(Ω) is written in its Wiener chaos expansion as given by (1.5.6),
then we can we introduce the Ornstein-Uhlenbeck operator.
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Definition 2.3.2. The linear operator L : dom(L)→ L2(Ω) with

dom(L) =

{
F ∈ L2(Ω)

∣∣∣∣∣
∞∑
q=1

q2 ‖Iq(fq)‖2
L2(Ω) <∞

}

and

LF =
∞∑
q=1

−qIq(fq)

is called the Ornstein-Uhlenbeck operator.

Note that the domain of L is simply the set of F where the sum in the definition of
L converges. The following result gives an alternative definition.

Proposition 2.3.3. The Ornstein-Uhlenbeck operator is equivalent to the operator L
where dom(L) = {F ∈ D1,2 |DF ∈ dom(δ)} and LF = −δDF .

Proof. We start by proving a useful formula. Let F,G ∈ D1,2, using the orthogonality
property of Wiener-Itô integrals, we have

E

(
G
∞∑
q=1

qIq(fq)

)
=
∞∑
q=1

q E(Iq(gq)Iq(fq))

=
∞∑
q=1

qq! 〈fq, gq〉H

= E (〈DF,DG〉H) (2.3.3)

= E(Gδ(DF )), (2.3.4)

where at the second last equality, we used Proposition 2.1.8 (iii), and at the last equality
we used the definition of δ, which only holds if DF ∈ dom(δ).

Now, using Definition 2.3.2 and (2.3.3), we have −E(GLF ) = E (〈DF,DG〉H) , where
F ∈ dom(L) and G ∈ D1,2. By Cauchy-Schwarz, |E (〈DF,DG〉H)| ≤ ‖G‖L2(Ω) ‖LF‖L2(Ω),

where both norms are finite as F ∈ dom(L) and G ∈ D1,2. Thus, (2.3.2) is satisfied and
DF ∈ dom(δ). Now we are allowed to use (2.3.4), which gives E(GLF ) = −E(Gδ(DF ))
for all G ∈ D1,2, so that LF = −δDF .

Conversely, assume that dom(L) = {F ∈ D1,2 |DF ∈ dom(δ)} and LF = −δDF .
Then using (2.3.4),

E(GLF ) = E

(
G

∞∑
q=0

−qIq(f)

)
,

for all G ∈ D1,2. Since both sides are finite due to F ∈ D1,2 and DF ∈ dom(δ), Definition
2.3.2 follows.

Definition 2.3.4. Let F ∈ L2(Ω). The pseudo-inverse Ornstein-Uhlenbeck oper-
ator, L−1, is defined by

L−1F = −
∞∑
q=1

1

q
Iq(F ).



2.3. DIVERGENCE OPERATOR AND ORNSTEIN-UHLENBECK OPERATOR 29

Proposition 2.3.5. If F ∈ L2(Ω), then L−1F ∈ dom(L) and LL−1F = F − E(F ).

Proof. Firstly, L−1F ∈ dom(L) because
∑∞

q=1 ‖Iq(f)‖L2(Ω) < ∞. From the definition of

L and L−1 we have

LL−1F =
∞∑
q=1

Iq(fq) = F − E(F ),

where the last equality follows from Theorem 1.5.7.

The next formula is a very important result. In Chapter 3, it will act as the bridge
between Malliavin calculus and Stein’s method by enabling us to bound distance between
probability laws in terms of Malliavin operators.

Lemma 2.3.6. Let F,G ∈ D1,2 and f : R→ R be a continuously differentiable function
with bounded derivatives. Then

E(Ff(G)) = E(F ) E(f(G)) + E(f ′(G)
〈
DG,−DL−1F

〉
H).

Proof. Using in order, Lemma 2.3.4, Proposition 2.3.3, (2.3.1), and the chain rule in
Proposition 2.1.7, we have

E ((F − E(F )) f(G)) = E
(
LL−1Ff(G)

)
= E

(
δ
(
−DL−1F

)
f(G)

)
= E

(〈
Df(G),−DL−1F

〉
H

)
= E

(
f ′(G)

〈
DG,−DL−1F

〉
H

)
.

Finally, we state an important inequality, which will be used prove the main theorem
of Chapter 3.

Theorem 2.3.7. Let F ∈ Hp, the pth Wiener chaos, where p ≥ 1. For all 1 < q < r,

‖F‖Lq(Ω) ≤ ‖F‖Lr(Ω) ≤
(
r − 1

q − 1

)p/2
‖F‖Lq(Ω) .

A long, but elementary proof of this result can be found in Section 2.8 of [NP12],
which follows Nelson’s [Nel73] proof of the hypercontractivity of the Ornstein-Uhlenbeck
semigroup, which generates the Ornstein-Uhlenbeck operator introduced above. Theorem
2.3.7 is a corollary. Alternatively, another proof uses the logarithmic Sobolev inequality
proved by Gross [Gro75] that appears in the theory of partial differential equations.

This bound shows that on a fixed Wiener chaos, all Lq(Ω) norms, where q > 1 are
equivalent. It also shows that elements of the Wiener chaos have finite moments of all
order q > 1.
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Chapter 3

Limit Theorems on the Wiener
Chaos

Stein’s lemma [Ste86] states that N ∼ N (0, 1) if and only if E(f ′(N) − Nf(N)) = 0
for all differentiable functions f : R → R such that E(f ′(N)),E(Nf(N)) are finite.
Perhaps this expectation could act as the distance between a random variable F and the
normal distribution, such that if E(f ′(F ) − Nf(F )) were approximately 0, then F was
approximately normal. The computation of such an expectation could be achieved by
applying Proposition 2.3.6, thereby bringing Malliavin calculus into the task of measuring
the distance between random variables and deriving limit theorems.

The aim of this chapter is to make the above heuristic argument rigorous. By doing
so, we will combine Stein’s method and Malliavin calculus to prove the celebrated fourth
moment theorem, which is arguably the most important result in this text.

The main references for this chapter are Nourdin and Peccati [NP09, NP12], and
Nualart and Ortiz-Latorre [NOL08].

Unless otherwise stated, we assume that H is any real separable Hilbert space.

3.1 Stein’s Method with Malliavin Calculus

Let µ1 and µ2 be probability measures. For the signed measure µ1 − µ2, on the Borel
field B, we can defined the total variation distance as

‖µ1 − µ2‖ = sup
B∈B
|µ1(B)− µ2(B)| .

This idea of introducing a distance between probability measures can be extended to
random variables associated with the probability measures.

Definition 3.1.1. Let F and G be Rd-valued random variables on a common probability
space (Ω,F ,P). The total variation distance between the random variables F and G
is defined as

dTV(F,G) = sup
B∈B(Rd)

|P(F ∈ B)− P(G ∈ B)| ,

where B(Rd) is the Borel field of Rd.

It is immediate from this definition that the total variation distance is a metric which
induces a topology that is stronger than convergence in distribution.

31



32 CHAPTER 3. LIMIT THEOREMS ON THE WIENER CHAOS

Proposition 3.1.2. Let Fn, F and G be Rd-valued random variables on a common
probability space (Ω,F ,P). Then

(i) dTV (F,G) is a metric.

(ii) If dTV(Fn, F )→ 0 as n→∞ then Fn
d−→ F as n→∞.

Proof. (i) If F and G have the same law, then clearly P(F ∈ B)− P(G ∈ B) = 0 for all
Borel sets B. If dTV(F,G) = 0, then P(F ∈ B) = P(G ∈ B) for all Borel sets B, so that
F and G have the same law. Thus, dTV(F,G) = 0 if and only if F and G have the same
law. Clearly, dTV(F,G) is symmetric. Using the triangle inequality for real numbers we
have that

sup
B∈B(Rd)

|P(F ∈ B)− P(G ∈ B)| ≤ sup
B∈B(Rd)

|P(F ∈ B)− P(H ∈ B)|+ |P(H ∈ B)− P(G ∈ B)|

≤ sup
B∈B(Rd)

|P(F ∈ B)− P(H ∈ B)|

+ sup
B∈B(Rd)

|P(H ∈ B)− P(G ∈ B)| .

(ii) If dTV(Fn, F ) = 0, then P(Fn ∈ B) → P(F ∈ B) for all Borel sets of the form

B = (−∞, x1]× · · · × (−∞, xd], which implies that Fn
d−→ F .

Note that the converse of Proposition 3.2 (ii) is not true in general. For example,
taking Fn = 1/n, we have that Fn converges in distribution to F = 0, but dTV(Fn, F ) = 1.

Let N ∼ N (0, 1) and let h : R→ R with E(|h(N)|) <∞. The differential equation

f ′(x)− xf(x)− h(x) + E(h(N)) = 0 (3.1.1)

is known as Stein’s equation.

Lemma 3.1.3. Let h : R→ [0, 1] be a continuous function. Then the solution to Stein’s
equation is

f(x) = ex
2/2

∫ x

−∞
(h(y)− E(h(N)))e−y

2/2 dy. (3.1.2)

Moreover, f ∈ C1(R), the class of continuously differentiable functions,

‖f‖∞ ≤
√
π/2 and ‖f ′‖∞ ≤ 2. (3.1.3)

Proof. By seeing that (3.1.1) can be written as

ex
2/2 ∂

∂x

(
e−x

2/2f(x)
)
− h(x) + E(h(N)) = 0,

it is clear that (3.1.2) is a solution.
Now E (h(N)− E(h(N))) = 0 can be written as∫ x

−∞
(h(y)− E(h(N)))e−y

2/2 dy +

∫ ∞
x

(h(y)− E(h(N)))e−y
2/2 dy = 0,
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so that

f(x) = −ex2/2
∫ ∞
x

(h(y)− E(h(N)))e−y
2/2 dy. (3.1.4)

Since h(x) ∈ [0, 1] for all x ∈ R, E(h(N)) ∈ [0, 1], which implies that |h(x)− E(h(N))| ≤
1. Now combining this with (3.1.2) and (3.1.4), we have

|f(x)| ≤ ex
2/2 min

(∫ x

−∞
e−y

2/2 dy,

∫ ∞
x

e−y
2/2 dy

)
= ex

2/2

∫ ∞
|x|

e−y
2/2 dy.

Let us define the last expression as g(x). For x > 0,

g′(x) = xex
2/2

∫ ∞
x

e−y
2/2 dy − 1 ≤ ex

2/2

∫ ∞
x

ye−y
2/2 dy − 1 = 0

So g is decreasing for x > 0 and by symmetry, it is increasing for x < 0. Thus, the
maximum of g is g(0) =

√
π/2 and ‖f‖∞ ≤

√
π/2.

Using (3.1.1) and (3.1.2), we have that

f ′(x) = h(x)− E(h(N)) + xex
2/2

∫ x

−∞
h(y)− E(h(N))e−y

2/2 dy. (3.1.5)

Then using similar arguments as above,

|f ′(x)| ≤ 1 + |x| ex2/2
∫ ∞
|x|

e−y
2/2 dy ≤ 1 + ex

2/2

∫ ∞
|x|

ye−y
2/2 dy = 2.

Finally, (3.1.5) is continuous because h is continuous, so f is continuously differen-
tiable.

While we will work exclusively with the total variation distance, it is possible to
use other distance functions, such as the Kolmogorov distance. Using different distance
functions will require making different assumptions on h, which will change the properties
for the solution of Stein’s equation.

Using the above lemma we can bound the total variation distance from a normal
random variable in terms of Malliavin operators.

Proposition 3.1.4. If F ∈ D1,2 with E(F ) = 0 and N ∼ N (0, 1), then

dTV(F,N) ≤ 2 E
(∣∣1− 〈DF,−DL−1F

〉
H

∣∣) . (3.1.6)

Proof. Let B be a Borel set in R. Using Lemma A.1.1, taking µ = law(N)+law(F ), there
exists a sequence of continuous function (gn)n≥1 with gn(x) ∈ [0, 1] which converges to 1B
almost everywhere. So by the dominated convergence theorem, E(gn(F )) → P (F ∈ B)
and E(gn(N))→ P (N ∈ B).

Now let fn be the solution to Stein’s equation with hn. Then using Stein’s equation,
followed by (3.1.3), we have

|E(gn(F ))− E(gn(N))| = |E(f ′n(F ))− E(Ffn(N))|
=
∣∣E (f ′n(F )

(
1−

〈
DF,−DL−1F

〉))∣∣
≤ E

(
2
∣∣1− 〈DF,−DL−1F

〉
H

∣∣) ,
where the last inequality is due to (3.1.3). Now letting n → ∞ and then taking the
supremum over all Borel sets B gives the desired result.
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3.2 Fourth Moment Theorem

We know specialize to the case where F in an element of the Wiener chaos and prove the
fourth moment theorem. This proof follows Nourdin and Peccati [NP09, NP12].

Lemma 3.2.1. Let σ be a permutation of {1, . . . , 2q} and S2q be the set of all such
permutations, and let the cardinality of {1, . . . , q} ∩ {σ(1), . . . , σ(q)} be denoted by r ∈
{0, . . . , q}. Then:

(i) There are
(
q
r

)2
q!2 permutations σ ∈ S2q such that the cardinality of {1, . . . , q} ∩

{σ(1), . . . , σ(q)} is r.

(ii) We have that {1, . . . , q} \ {σ(1), . . . , σ(q)} = {σ(q + 1), . . . , σ(2q)} \ {q + 1, . . . , 2q}
and {σ(1), . . . , σ(q)} \ {1, . . . , q} = {q + 1, . . . , 2q} \ {σ(q + 1), . . . , σ(2q)}.

(iii) The cardinality of {q + 1, . . . , 2q} ∩ {σ(q + 1), . . . , σ(2q)} is also r.

Proof. First, we prove (i). Consider a permutation σ ∈ S2q formed by the following proce-
dure. Firstly, choose r distinct elements x1, . . . , xr of {1, . . . , q}, which can be done in

(
q
r

)
ways. Secondly, choose q−r distinct elements of xr+1, . . . , xq of {q + 1, . . . , 2q}, which can
be done in

(
q
r

)
ways. Thirdly, choose a bijection from {1, . . . , q} to {x1, . . . , xq}, which can

be done in q! ways. Lastly, choose a bijection from {q + 1, . . . , 2q} to {1, . . . , 2q} \ {x1, . . . , xq},
which can be done in q! ways. So there are

(
q
r

)2
q!2 ways to form a permutation us-

ing this procedure and the first three steps ensures that the cardinality of {1, . . . , q} ∩
{σ(1), . . . , σ(q)} is r.

Next, we prove (ii). If x ∈ {1, . . . , q}\{σ(1), . . . , σ(q)}, then x /∈ {σ(1), . . . , σ(q)}, so
x ∈ {σ(q + 1), . . . , σ(2q)}. Also, x ∈ {1, . . . , q}, so x /∈ {q + 1, . . . , 2q}. Conversely, if
x ∈ {σ(q+1), . . . , σ(2q)}\{q+1, . . . , 2q}, then x /∈ {q+1, . . . , 2q}, so x ∈ {q+1, . . . , 2q}.
Also x ∈ {σ(q+1), . . . , σ(2q)}, so x /∈ {σ(q+1), . . . , σ(2q)}. This proves the first equality.
After swapping 1, . . . , q with q + 1 . . . , 2p, the same argument can be used to prove the
second equality.

Finally, we prove (iii). Since |{1, . . . , q} ∩ {σ(1), . . . , σ(q)}| = r, we have |{1, . . . , q}\
{σ(1), . . . , σ(q)}| = q − r. By (ii), |{σ(q + 1), . . . , σ(2q)}\{q + 1, . . . , 2q}| = q − r, so
|{q + 1, . . . , 2q} ∩ {σ(q + 1), . . . , σ(2q)}| = r.

Lemma 3.2.2. Let f ∈ H�q and F = Iq(f) be a Wiener-Itô integral of order q ≥ 2.
Then we have:

1

q
‖DF‖2

H = q! ‖f‖H⊗q + q

q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf) (3.2.1)

Var

(
1

q
‖DF‖2

H

)
=

1

q2

q−1∑
r=1

r2r!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r (3.2.2)

E(F 4)− 3 E(F 2)2 =
3

q

q−1∑
r=1

rr!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r (3.2.3)

=

q−1∑
r=1

q2

(
q

r

)2(
‖f ⊗r f‖2

H⊗2q−2r +

(
2q − 2r

q − r

)∥∥f⊗̃rf∥∥2

H⊗2q−2r

)
.

(3.2.4)
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Proof. Without loss of generality, we can work on the Hilbert space L2(T,B, µ). Recall
that by Proposition , DF = qIq−1(f̄t), where f̄t(t1, . . . , tq−1) := f(t1, . . . , tq−1, t). Using
the product formula in Corollary 1.4.8, the stochastic Fubini theorem [PT10] and the
formula of the contraction given in (B.5.1), we have

1

q
‖DF‖2

H = q

∫
T

Iq−1(f̄t)
2 dµ(t)

= q

q−1∑
r=0

r!

(
q − 1

r

)2

I2q−2−2r

(∫
T

f̄t ⊗r f̄t dµ(t)

)

= q

q−1∑
r=0

r!

(
q − 1

r

)2

I2q−2−2r (f ⊗r+1 f)

= q

q∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r

(
f⊗̃rf).

Now since I0 is the identity map for constants, the summand when r = q is (q−1)!I0(f⊗q
f) = (q − 1)! ‖f‖H⊗q , so (3.2.1) follows.

Now using the orthogonality of Wiener-Itô integrals and (3.2.1), we have

Var

(
1

q
‖DF‖2

H

)
= q2

q∑
r=1

(r − 1)!2
(
q − 1

r − 1

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥H⊗2q−2r

=
1

q2

q−1∑
r=1

r2r!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r

.
Next, we prove (3.2.4). From Definition 2.3.2 and Proposition 2.3.3, F = −LF/q =

δ(DF )/q. Together with (2.3.1), the fourth moment can be expressed as

E(F 4) =
1

q
E(F 3δ(DF )) =

1

q
E
(〈
D(F 3), DF

〉
H

)
=

3

q
E
(
F 2 ‖DF‖2

H
)
,

where the last equality follows from D(F 3) = 3F 2DF . This can be obtained by using
the product formula followed by Proposition . Alternatively, it follows from an extended
chain rule for Lipschitz functions (see Proposition 1.2.4 in [Nua06]), since the version in
Proposition 2.1.7 requires the function to have bounded partial derivatives. The random
variables F 2 and ‖DF‖2

H can be expressed using the product formula and 3.2.1, then
using the orthogonality of Wiener-Itô integrals gives

E(F 4) =
3

q

(
q (q! ‖f‖H⊗n)2 +

q−1∑
r=1

r!

(
q

r

)2

q2(r − 1)!

(
q − 1

r − 1

)2

E
(
I2q−2r(f⊗̃rf)2

))

= 3 E(F 2)2 +
3

q

q−1∑
r=1

rr!

(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥H⊗2q−2r .

Finally, we will prove (3.2.3). Let σ ∈ S2q and consider the operator

Lσ(f) :=

∫
T 2q

f(t1, . . . , tq)f(tσ(1), . . . , tσ(q))f(tq+1, . . . , t2q)f(tσ(q+1), . . . , tσ(2q)) dµ(t1) . . . dµ(t2q).
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Recalling that f is a symmetric function and using Lemma 3.2.1 (iii), we can assume with-
out loss of generality that the last r arguments of f(t1, . . . , tq) and f(tσ(1), . . . , tσ(q)) are
equal, and the same holds for f(tq+1, . . . , t2q) and f(tσ(q+1), . . . , tσ(2q)). From Lemma 3.2.1
(ii), we can also assume that the first q−r arguments of f(t1, . . . , tq) and f(tσ(q+1), . . . , tσ(2q))
are equal, and the same holds for f(tσ(1), . . . , tσ(q)) and f(tq+1, . . . , t2q). Therefore,

Lσ(f) =

∫
T 2q−2r

(∫
T r
f(t1, . . . , tq)f(tσ(1), . . . , tσ(q)) dµ(tq−r+1) . . . dµ(tr)

)
(∫

T r
f(tσ(q+1), . . . , tσ(2q))f(tq+1, . . . , t2q) dµ(t2q−r+1) . . . dµ(t2q)

)
dµ(t1) . . . dµ(tq−r)dµ(tq+1) . . . dµ, (t2q−1)

=

∫
T 2q−2r

(f ⊗r f)(u1, . . . , u2q−2r)
2 dµ(u1) . . . dµ(u2q−2r)

= ‖f ⊗r f‖2
H⊗2q−2r . (3.2.5)

The symmetrization of f ⊗ f is

(f⊗̃f)(t1, . . . , t2q) =
1

(2q)!

∑
σ∈S2q

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q)).

Then, ∥∥f⊗̃f∥∥2

H⊗2q =
1

(2q)!2

∑
σ,σ′∈S2q

∫
T 2q

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q))

f(tσ′(1), . . . , tσ′(q))f(tσ′(q+1), . . . , tσ′(2q)) dµ(t1) . . . dµ(t2q)

=
1

(2q)!

∑
σ∈S2q

∫
T 2q

f(t1, . . . , tq)f(tq+1, . . . , t2q)

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q)) dµ(t1) . . . dµ(t2q)

=
1

(2q)!

q∑
r=0

∑
σ∈S2q

|{1,...,q}∩{σ(1),...,σ(q)}|=r

∫
T 2q

f(t1, . . . , tq)f(tq+1, . . . , t2q)

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q)) dµ(t1) . . . dµ(t2q).

The second equality above follows from the fact that there are (2q)! ways to permute the
dummy variables t1, . . . , t2q without changing the value of the integral. Combining this
with (3.2.5) and Lemma (3.2.1) (i) gives

(2q)!
∥∥f⊗̃f∥∥2

H⊗2q = 2q!2 ‖f‖4
H⊗q + q!2

q−1∑
r=1

(
q

r

)2

‖f ⊗r f‖2
H⊗2q−2r , (3.2.6)

since ‖f ⊗0 f‖2
H⊗2q = ‖f‖4

H⊗q = ‖f ⊗q f‖2
H⊗0 . We can evaluate the fourth moment using

the Corollary 1.4.8 and the orthogonality property of Wiener-Itô integrals, which gives

E(F 4) = (2q)!
∥∥f⊗̃f∥∥2

H⊗2q + q!2 ‖f‖4
H⊗q +

q−1∑
r=1

r!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r .



3.2. FOURTH MOMENT THEOREM 37

Substituting (3.2.6) into this equation and noting that E(F 2)2 = q!2 ‖f‖4
H⊗q , we deduce

that

E(F 4) = 3 E(F 2) +

q−1∑
r=1

(
q!2
(
q

r

)2

‖f ⊗r f‖2
H⊗2q−2r + r!2

(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r

)

= 3 E(F 2) +

q−1∑
r=1

q2

(
q

r

)2(
‖f ⊗r f‖2

H⊗2q−2r +

(
2q − 2r

q − r

)∥∥f⊗̃rf∥∥2

H⊗2q−2r

)
.

Corollary 3.2.3. Under the assumptions of Lemma 3.2.2,

Var

(
1

q
‖DF‖2

H

)
≤ q − 1

3q

(
E(F 4)− 3 E(F 2)2

)
.

Proof. Using (3.2.2),

Var

(
1

q
‖DF‖2

H

)
≤ q − 1

q2

q−1∑
r=1

rr!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r .

Then the result immediately follows from (3.2.3).

We can now show a total variation distance bound for elements of the Wiener chaos.

Proposition 3.2.4 (Nourdin and Peccati). Let f ∈ H�q and F = Iq(f) be a Wiener-
Itô integral of order q ≥ 2, E(F 2) = 1 and N ∼ N (0, 1). Then we have

dTV (F,N) ≤ 2

√
Var

(
1

q
‖DF‖2

H

)
≤ 2

√
q − 1

3q
(E(F 4)− 3).

Proof. Since L−1F = −F/q by Definition 2.3.4, we have 〈DF,−DL−1F 〉H = ‖DF‖2
H /q

and Proposition 3.1.4 implies

dTV(F,N) ≤ 2 E

(∣∣∣∣1− 1

q
‖DF‖2

H

∣∣∣∣) . (3.2.7)

Now, using Jensen’s inequality(
E

(∣∣∣∣1− 1

q
‖DF‖2

H

∣∣∣∣))2

≤ E

((
1− 1

q
‖DF‖2

H

)2
)

= Var

(
1− 1

q
‖DF‖2

H

)
+ E

(
1− 1

q
‖DF‖2

H

)2

.

However, E
(
1− ‖DF‖2

H /q
)

= 0 due to (3.2.1), so combining this with and Corollary
3.2.3 gives the required bound.

Theorem 3.2.5 (Fourth moment theorem). Let (Fn)n≥1 be a sequence of Wiener-Itô
integrals, where Fn = Iq(fn) and f ∈ H�q, such that E(F 2

n) → σ2 as n → ∞. Then, as
n→∞, the following are equivalent:
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(i) Fn
d→ N (0, σ2).

(ii) E(F 4
n)→ 3σ2.

(iii) Var(‖DFn‖2
H)→ 0.

(iv) For all 1 ≤ r ≤ q − 1, we have
∥∥fn⊗̃rfn∥∥H⊗2q−2r = 0.

(v) For all 1 ≤ r ≤ q − 1, we have ‖fn ⊗r fn‖H⊗2q−2r = 0.

Proof. We can assume without loss of generality that σ2 = 1.

First, we prove (i) ⇒ (ii). The assumption E(F 2
n) → 1 and the equivalence of Lp(Ω)

norm on the Wiener chaos by Theorem 2.3.7, implies supn≥0E(|Fn|r) <∞ for all r > 2.
Then by Proposition A.3.1 and (i), we have that E(F r

n) → E(N r) for all r > 2, where
N ∼ N (0, σ2). In the case of r = 4, E(N4) = 3, which gives (ii).

Next, (ii) ⇒ (iii) follows immediately from Corollary 3.2.3. Then (iii) ⇒ (iv) follows
immediately from Equation 3.2.2. Then (iv) ⇒ (v) follows immediately from Equation
3.2.4 and 3.2.3.

Finally, we prove (v) ⇒ (i). Since
∥∥fn⊗̃rfn∥∥H⊗2q−2r ≤ ‖fn ⊗r fn‖H⊗2q−2r → 0, it

follows from Equation 3.2.2 that and 3.2.4 that dTV(Fn, N) → 0 as n → ∞, which
implies convergence in distribution.

Condition (iii) in Theorem 3.2.5 is often written as ‖DFn‖2
H

L2

−→ qσ2 as n→∞, since
(3.2.1) implies that E

(
‖DFn‖2

H
)
→ qσ2 as n→∞.

The original proof of the fourth moment theorem was due to Nualart and Peccati
[NP05] using the the Dambis-Dubins-Schwarz theorem. A proof using Malliavin calculus
was given by Nualart and Ortiz-Latorre [NOL08]. The proof we follow here, using Malli-
avin calculus and Stein’s method, was discovered by Nourdin and Peccati [NP09]. A few
other proofs have also been discovered.

The fourth moment theorem has led to a simplification for proving limit theorems
on the Wiener chaos. Prior to its discovery, such limits were proved using method of
moments, which required showing that all moments of the sequence converged to the
moments of the normal distribution. The computation of these moments was usually
done using diagram formulas. Janson [Jan97], provides an overview of these methods.
Now instead of needing to show convergence in all moments, we only need to consider
the second and fourth moments.

Corollary 3.2.6. Under the assumptions of Theorem 3.2.5, dTV(Fn, N)→ 0 as n→∞,

where N ∼ N (0, 1), is equivalent to Fn
d→ N (0, σ2) as n→∞.

Proof. Convergence in total variation implies convergence in distribution by Proposition

(ii). Conversely, assume that Fn
d→ N (0, σ2) as n → ∞. Then by Theorem 3.2.5,

E(F 4
n) → 3σ2 as n → ∞. This implies convergence in total variation by Proposition

3.2.4.

The fourth moment theorem is surprising in the sense that it shows that on the Wiener
chaos, convergence in total variation, which is usually a strong mode of convergence, is
equivalent to convergence in distribution, which is usually a weak mode of convergence.
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3.3 Multivariate Limit Theorems

We will now generalize the fourth moment theorem to the multivariate setting, as well
as give sufficient conditions for random vectors, not necessarily on the Wiener chaos, to
converge to the multivariate normal distribution. In this section, we follow the proofs
from Nualart and Ortiz-Latorre [NOL08].

Lemma 3.3.1. Fix d ≥ 2 and q1, . . . , qd ≥ 1 and let Fn = (Iq1(f
1
n), . . . , Iqd(f

d
n)) for all

n ≥ 1 such that

lim
n→∞

E(F i
nF

j
n) = δij. (3.3.1)

for all i, j = 1, . . . , d. If ‖DF i
n‖

2
H

L2

−→ qi as n→∞ for all i = 1, . . . , d, then 〈DF i
n, DF

j
n〉

2
H

L2

−→√
qiqjδij as n→∞ for all i, j = 1, . . . , d.

Proof. When i = j, the result follows immediately from the assumption. So it remains
to show the result in the case when i < j. Without loss of generality, we can work
on the Hilbert space L2(T,B, µ). Recall that by Proposition , DF = qIq−1(f̄t), where
f̄t(t1, . . . , tq−1) := f(t1, . . . , tq−1, t). Using the product formula in Corollary 1.4.8, the
stochastic Fubini theorem [PT10] and the formula of the contraction given in (B.5.1), we
have〈

DF i
n, DF

j
n

〉
H = qiqj

∫
T

Iqi−1(f̄ in,t)Iqj−1(f̄ jn,t) dµ(t)

= qiqj

qi∧qj−1∑
r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r

(∫
T

f̄ in,t ⊗r f̄
j
n,t dµ(t)

)

= qiqj

qi∧qj−1∑
r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r

(
f in ⊗r+1 f

j
n

)
= qiqj

qi∧qj∑
r=1

(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f in⊗̃rf jn

)
.

Using the orthogonality of Wiener-Itô integrals the fact that we can assume without loss
of generality that qi ≤ qj, we have that

E
(〈
DF i

n, DF
j
n

〉2

H

)
= q2

i q
2
j

qi∑
r=1

(r − 1)!2
(
qi − 1

r − 1

)2(
qj − 1

r − 1

)2

(qi + qj − 2r)!
∥∥f in⊗̃rf jn∥∥2

H⊗qi+qj−2r .

Now since
∥∥f in⊗̃rf jn∥∥2

H⊗qi+qj−2r ≤ ‖f in ⊗r f jn‖
2
H⊗qi+qj−2r , it suffices to prove that for all

r = 1, . . . , qi,

lim
n→∞

∥∥f in ⊗r f jn∥∥2

H⊗qi+qj−2r = 0.

From the definition of the contraction,∥∥f in ⊗r f jn∥∥2

H⊗qi+qj−2r =
〈
f in ⊗qi−r f in, f jn ⊗qj−r f jn

〉
H⊗2r .

There are 3 cases to consider. When r = 1, . . . , qi − 1, we have using the Cauchy–
Schwarz inequality that∥∥f in ⊗r f jn∥∥2

H⊗qi+qj−2r ≤
∥∥f in ⊗qi−r f in∥∥H⊗2r

∥∥f jn ⊗qj−r f jn∥∥H⊗2r → 0,
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as n→∞, due to (3.3.1) and Theorem 3.2.5.
When r = qi < qj, the Cauchy-Schwarz inequality gives∥∥f in ⊗r f jn∥∥2

H⊗qi+qj−2r ≤
∥∥f in∥∥H⊗2r

∥∥f jn ⊗qj−r f jn∥∥H⊗2r → 0,

as n → ∞, since (3.3.1) implies that supn≥1 ‖f in‖H⊗2r < ∞, while (3.3.1) and Theorem
3.2.5 ensures that

∥∥f jn ⊗qj−r f jn∥∥H⊗2r → 0.
Finally, when r = qi = qj using the orthogonality property we have that∥∥f in ⊗r f jn∥∥H⊗qi+qj−2r = qi! E(F i

nF
j
n)→ 0

as n→∞, due to (3.3.1).
A similar argument can be used in the case where i > j. This completes the proof.

A vector of Wiener-Itô integrals converges component-wise to a Gaussian distribution
if and only if joint convergence holds. The following result was originally due to Peccati
and Tudor [PT05].

Theorem 3.3.2 (Peccati and Tudor). Fix d ≥ 2 and q1, . . . , qd ≥ 1 and let Fn =
(Iq1(f

1
n), . . . , Iqd(f

d
n)) for all n ≥ 1 and Id be the d× d identity matrix. Assume that

lim
n→∞

E(F i
nF

j
n) = δi,j (3.3.2)

for all i, j = 1, . . . , d. Then the follow conditions are equivalent:

(i) Fn
d−→ Nd(0, Id) as n→∞

(ii) F i
n

d−→ N (0, 1) as n→∞, for all i = 1, . . . , d.

Proof. It is a basic fact of convergence in distribution that (i) ⇒ (ii). So we only need
to prove that (ii) ⇒ (i). Since (3.3.2) ensures that (Fn)n≥1 is bounded in L2(Ω), this
sequence is tight. So Prokhorov’s Theorem implies that there is a subsequence (Fnm)m≥1

and random variable G, such that Fnm
d−→ G as m → ∞. Now, let φn(t) = E

(
ei〈t,Fn〉

)
,

be the characteristic function of Fn, and φ be the characteristic function of G. Then we
have that

lim
m→∞

φnm(t) = φ(t) (3.3.3)

for all t ∈ Rd. Due the uniqueness of limits, it suffices to G ∼ Nd(0, Id) and we will do
this by showing that φ is the characteristic function of Nd(0, Id).

Now, for all i = 1, . . . , d, ∂φn(t)/∂ti = i E(F i
ne

i〈t,Fn〉), so we can apply the continuous
mapping theorem to (3.3.3) to get

lim
m→∞

∂φnm
∂ti

(t) =
∂φ

∂ti
(t). (3.3.4)

Now from Definition 2.3.2 and Proposition 2.3.4, F = −LF/q = δ(DF )/q. Together with
(2.3.1), we get

E
(
F i
ne

i〈t,Fn〉
)

=
1

qi
E
(
δ(DF i

n)ei〈t,Fn〉
)
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=
1

qi
E
(〈
DF j

k , D
(
ei〈t,Fn〉

)〉
H

)
=

i

qi

d∑
j=1

tj E
(
ei〈t,Fn〉

〈
DF i

n, DF
j
n

〉
H

)
,

where we used the definition of the Malliavin derivative at the last line. As a result of
(ii) and (3.3.2), we can apply Lemma 3.3.1 to get

∂φnm
∂ti

(t) = − 1

qi
ti E

(
ei〈t,Fnm 〉qi

)
Finally, taking the m→∞ and combining this with 3.3.4 give

∂φ

∂ti
(t) = −tiφ(t), (3.3.5)

for all i = 1, . . . , d. This system of partial differential equations has solution φ(t) =
exp (−〈t, t〉Rd /2) which is the characteristic function of Nd(0, Id).

The fourth moment theorem gives conditions for the convergence of random variables
on the Wiener chaos. However, we can also examine the conditions for which any square
integrable random variable converges to a Gaussian distribution. To do this we make use
of the Wiener-Ito expansion. The following theorem gives sufficient conditions.

Theorem 3.3.3 (Nualart and Ortiz-Latorre). Let (Fn)n≥1 be a sequence of centered
d-dimensional random vector in L2(Ω). Then for all n ≥ 1 and i = 1, . . . , d, we have the
Wiener-Ito expansion

F i
n =

∞∑
q=1

Iq(f
i
n,q).

Suppose that in addition, for all i, j = 1, . . . , d:

(i) For all q ≥ 1, we have σi,jq := limn→∞ q!
〈
f in,q, f

j
n,q

〉
H⊗q exists.

(ii)
∑∞

q=1 |σi,jq | <∞.

(iii) For all q ≥ 2, r = 1, . . . , q − 1, we have
∥∥f in,q ⊗r f in,q∥∥2

H⊗2q−2r → 0 as n→∞.

(iv) limN→∞ supn≥1

∑∞
q=N+1 q!

∥∥f in,q∥∥2

H⊗q = 0.

Then Fn
d→ N (0,Σ), where Σ is a d× d matrix with (i, j)-th entry

σi,j =
∞∑
q=1

σi,jq .

Note that condition (iii) can be replaced with any of the equivalent conditions listed
in Theorem 3.2.5.
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Proof. It suffices to prove that for all a ∈ Rd, aTFn
D−→ N (0, aTΣa) as n → ∞. Now

from (i) and (iii) and Theorem 3.2.5, we have Iq(f
i
n,q)

D−→ N (0, σi,iq ) as n → ∞, for all
i = 1, . . . , d and q ≥ 1. Using (i) amd Theorem 3.3.2 gives

(I1(aTfn,1), . . . , Iq(a
Tfn,q))

D−→ (G1, . . . , Gq), (3.3.6)

as n→∞, where fn,k = (f 1
n,k, . . . , f

d
n,k), Gk ∼ N (0, aTΣka) are independent, and Σk is a

d× d matrix with (i, j) entry σi,jk , for all k = 1, . . . , q. Now define

FN
n :=

N∑
q=1

Iq(fn,q), GN :=
N∑
q=1

Gq, G :=
∞∑
q=1

Gq.

Let g be a continuously differentiable function with derivative bounded by C. Then,
using the mean value theorem [DC99], there is a H between aTFn and aTFN

n such that

E(g(aTFn))− E(g(aTFN
n )) = E

(
g′(H)aT

∞∑
q=N+1

Iq(fn,q)

)

≤ E

(
C|a|

∣∣∣∣∣
∞∑

q=N+1

Iq(fn,q)

∣∣∣∣∣
)

≤ C|a|

E

∣∣∣∣∣
∞∑

q=N+1

Iq(fn,q)

∣∣∣∣∣
2
1/2

= C|a|

 d∑
i=1

E

( ∞∑
q=N+1

Iq(f
i
n,q)

)2
1/2

= C|a|

(
d∑
i=1

∞∑
q=N+1

E
(
Iq(f

i
n,q)

2
))1/2

where we have use the Cauchy-Schwarz inequality for the Euclidean norm, and then
the Cauchy-Schwarz inequality for the L2(Ω) norm, and the last line follows from the
orthogonality property of Wiener-Itô integrals. Now∣∣E(g(aTFn))− E(g(G))

∣∣ ≤ ∣∣E(g(aTFn))− E(g(aTFN
n ))
∣∣+
∣∣E(g(aTFN

n ))− E(g(GN))
∣∣

+
∣∣E(g(GN))− E(g(G))

∣∣
≤C|a|

(
d∑
i=1

∞∑
q=N+1

E
(
Iq(f

i
n,q)

2
))1/2

+
∣∣E(g(aTFN

n ))− E(g(GN))
∣∣

+
∣∣E(g(GN))− E(g(G))

∣∣ .
Now if we take n → ∞, followed by N → ∞, then the first term approaches 0 due to
(iv) and the fact that E

(
Iq(f

i
n,q)

2
)

= q!
∥∥f in,q∥∥H⊗q , the second term approaches 0 due to

(3.3.6), and the third term approaches 0 due to (ii). This implies that aTFn
D−→ G as

n→∞. Now since Gq are independent, G ∼ N (0, aTΣa). This completes the proof.



Chapter 4

Convergence of Partial Sum
Processes

In this chapter we examine the limits of partial sum processes. The general setup is
described in Section 4.1. The limit theorems discussed here can be viewed as a general-
ization of Donsker’s theorem to the case where the process is not independent. It turns
out that the limiting distribution of these partial sum processes are Brownian motion
when underlying process exhibits short range dependence, as proved by Breuer and Ma-
jor [BM83], or a Hermite process when it exhibits long range dependence, as proved by
Taqqu [Taq79], and Dobrushin and Major [DM79].

We will provide a modern proof of the Breuer-Major theorem using Theorem 3.3.3,
instead of the method of moments and diagram formula that was originally used to
prove it. Then we will discuss self-similar processes with stationary increments, such as
fractional Brownian motion and the Hermite processes.

4.1 Partial Sum Processes

Let X = (Xn)n∈Z be a stationary Gaussian process and let f : R → R be a measurable
function such that Var(f(Xn)) < ∞ and denote its autocovariance function by ρ(n) =
E(X0Xn). Without loss of generality, we will further assume that E(Xn) = 0, Var(Xn) =
1 and E(f(Xn)) = 0 for all n ∈ Z.

Consider the process

Vt,n =

[nt]∑
k=1

f(Xk). (4.1.1)

Note that [x] = bxc if x ≥ 0, and [x] = bxc+ 1, if x < 0. Let Vn = (Vt,n)t∈R.
In this section, we are interested in the limit as n → ∞ of Vn/an, where an is a

deterministic real sequence, as well as the condition on the autocovariance function under
which the process has a nondegenerate limit.

By Proposition 1.2.3 (ii), the assumption that Var(f(Xn)) <∞ implies that f has a
Hermite expansion

f(x) =
∞∑
q=1

aqHq(x), (4.1.2)

where Hq is the qth Hermite polynomial.

43
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Definition 4.1.1. Let f : R → R have the Hermite expansion (4.1.2). The smallest
integer m such that the coefficient am 6= 0 is known as the Hermite rank of f .

Before we can apply the fourth moment theorem we need to write X as an isonormal
Gaussian process. Denote the closed linear subspace of L2(Ω) spanned by X as H.
Typically, H is infinite-dimensional, but if this is not the case, then add Gaussian white
noise to the spanning set so that H becomes infinite-dimensional. Since H is an infinite-
dimensional separable Hilbert space, there exists an isometry ψ : H → L2(R). Put
gk = ψ(Xk), then due to the isometry we have that for all k, l ∈ N,

ρ(k − l) = E(XkXl) = 〈gk, gl〉L2(R) . (4.1.3)

Then the isonormal Gaussian process (X(g))g∈L2(R) satisfies (X(gk))k≥0
d
= (Xk)k≥0. There-

fore, without loss of generality we can write

Xk = X(gk) = I1(gk). (4.1.4)

4.2 Central Limit Theorem for Partial Sum Processes

In this section we use Theorem 3.3.3 to show that the partial sum of a subordinated
Gaussian process, f(X), converges to a normal random variable. This result is known as
the Breuer-Major theorem.

We follow the proof in [Nou12].

Theorem 4.2.1. Let f : R→ R be the function in (4.1.2) with Hermite rank m, and Vn
be defined in (4.1.1). If

∑
n∈Z |ρ(n)|m <∞, then

1√
n
Vn

fdd→ σB,

where B is standard Brownian motion and

σ2 =
∞∑
q=d

q!a2
q

∑
n∈Z

ρ(n)q <∞.

Proof. Since Xk is a Gaussian process, due to (4.1.4) and (4.1.3), we can assume Xk =
X(ek) and 〈ek, el〉H = ρ(k − l). Using the Hermite expansion of f , we get

1√
n
Vn =

1√
n

[nt]∑
k=1

∑
q≥m

aqHq(Xk) =
∑
q≥d

Iq(ft,n,q),

where the last equality follows by applying Theorem 1.4.9 so that for all n ≥ 1 and q ≥ m,

ft,n,q =
aq√
n

[nt]∑
k=1

g⊗qk ∈ H
�q.

Let d ≥ 1 and F i
n =

∑
q≥m Iq(fti,n,q), for i = 1, . . . , d. Recall that Cov(σB(t), σB(s)) =

σ2(t ∧ s). So in order to prove that Fn converges in finite dimensional distribution to a
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scaled Brownian motion, we need to show that as n→∞, Fn = (F 1
n , . . . , F

d
n)

d−→ Nd(0,Σ),
where the (i, j) entry of Σ is

σi,j = (ti ∧ tj)
∞∑
q=m

q!a2
q

∑
v∈Z

ρ(v)q.

We do this by checking the sufficient conditions in Theorem 3.3.3.
Condition (i). For all q ≥ m and t > s ≥ 0, using the parallelogram law

2 〈ft,n,q, fs,n,q〉H⊗q = ‖ft,n,q‖H⊗q + ‖fs,n,q‖H⊗q − ‖ft,n,q − fs,n,q‖H⊗q

=
a2
q

n

[nt]∑
i,j=1

ρ(i− j)q +
a2
q

n

[ns]∑
i,j=1

ρ(i− j)q −
a2
q

n

[nt]−[ns]∑
i,j=1

ρ(i− j)q

= a2
q

∑
v∈Z

ρ(v)q
[nt]− |v|

n
1{|v|<[nt]} + a2

q

∑
v∈Z

ρ(v)q
[ns]− |v|

n
1{|v|<[nt]}

− a2
q

∑
v∈Z

ρ(v)q
[nt]− [ns]− |v|

n
1{|v|<[nt]−[ns]}.

The assumption
∑

v∈Z |ρ(v)|m <∞ and the indicator functions ensures that this expres-

sion is bounded, and noting that [nt]−|v|
n

1{|v|<[nt]} → t so we can apply the dominated
convergence theorem as n→∞ which implies that

q! 〈ft,n,q, fs,n,q〉H⊗q → (t ∧ s)q!a2
q

∑
v∈Z

ρ(v)q.

Condition (ii). Since E(X2
k) = 1 for all k ≥ 1, the Cauchy-Schwarz inequality gives

E(Xk+lXl)
2 ≤ E(X2

k+l) E(X2
l ), which implies that |ρ(k)| ≤ 1. Therefore,

∞∑
q=m

q!a2
q

∑
v∈Z

ρ(v)q ≤
∞∑
q=m

q!a2
q

∑
v∈Z

|ρ(v)|m = E(f(X1)2)
∑
v∈Z

|ρ(v)|m <∞,

since by assumption, both expressions in the last equality are finite.
Condition (iii). Let q ≥ m and q 6= 1. Then

ft,n,q ⊗r ft,n,q =
a2
q

n

[nt]∑
i,j=1

g⊗qi ⊗r g
⊗q
j

=
a2
q

n

[nt]∑
i,j=1

〈gi, gj〉rH g
⊗q−r
i g⊗q−rj

=
a2
q

n

[nt]∑
i,j=1

ρ(i− j)rg⊗q−ri g⊗q−rj ,

for all n ≥ 1 and r = 1, . . . , q − 1. Therefore,

‖t,n,q ⊗r ft,n,q‖2
H⊗2q−2r =

a4
q

n2

[nt]∑
i,j,k,l=1

ρ(k − l)rρ(i− j)r
〈
g⊗q−ri ⊗ g⊗q−rj , g⊗q−rk ⊗ g⊗q−rl

〉
H⊗2q−2r
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=
a4
q

n2

[nt]∑
i,j,k,l=1

ρ(k − l)rρ(i− j)rρ(k − i)q−rρ(l − j)q−r.

Now |ρ(k − l)rρ(k − i)q−r| ≤ |ρ(k − l)|q + |ρ(k − i)|q, using this we have

‖ft,n,q ⊗r ft,n,q‖2
H⊗2q−2r ≤

a4
q

n2

[nt]∑
i,j,k,l=1

|ρ(k − l)|q
(
|ρ(i− j)|r|ρ(l − j)|q−r + |ρ(i− j)|q−r|ρ(l − j)|r

)
≤
a4
q

n2

∑
k∈Z

|ρ(k)|q
[nt]∑

i,j,l=1

(
|ρ(i− j)|r|ρ(l − j)|q−r + |ρ(i− j)|q−r|ρ(l − j)|r

)
≤

2a4
q

n

∑
k∈Z

|ρ(k)|m
∑
|i|≤[nt]

|ρ(i)|r
∑
|j|≤[nt]

|ρ(j)|q−r

= 2a4
q

∑
k∈Z

|ρ(k)|mn−1+r/q
∑
|i|≤[nt]

|ρ(i)|rn−1+(q−r)/q
∑
|j|≤[nt]

|ρ(j)|q−r.

Choose δ ∈ (0, t). In order to show that ‖ft,n,q ⊗r ft,n,q‖2
H⊗2q−2r → 0 as n→∞, it suffices

to show that

n−1+r/q
∑
|j|≤[nt]

|ρ(j)|r = n−1+r/q

 ∑
|j|≤[nδ]

|ρ(j)|r +
∑

[nδ]<|j|≤[nt]

|ρ(j)|r
→ 0,

since this would also imply that n−1+(q−r)/q∑
|j|≤[nt] |ρ(j)|q−r → 0, while

∑
k∈Z |ρ(k)|m <

∞ by assumption. Using Hölder’s inequality gives

n−1+r/q
∑
|j|≤[nδ]

|ρ(j)|r ≤ n−1+r/q(2[nδ] + 1)1−r/q

(∑
j∈Z

|ρ(j)|q
)r/q

≤ Kδ1−r/q, (4.2.1)

whereK > 0 is a constant and the last inequality follows from
∑

j∈Z |ρ(j)|q ≤
∑

j∈Z |ρ(j)|m <
∞. We also have

n−1+r/q
∑

[nδ]<|j|≤[nt]

|ρ(j)|r ≤

 ∑
[nδ]<|j|≤[nt]

|ρ(j)|r
r/q

. (4.2.2)

Since 1 ≤ r ≤ q − 1, taking n → ∞, followed by δ → 0, we get (4.2.1) and (4.2.2)
converging to 0, as required.

Condition (iv). Let N ≥ m. Then,

∞∑
q=k+1

q! ‖ft,n,q‖2
H⊗q =

1

n

∞∑
q=k+1

a2
qq!

[nt]∑
i,j=1

ρ(i− j)q

≤
∞∑

q=k+1

a2
qq!
∑
v∈Z

ρ(v)q

≤
∑
v∈Z

ρ(v)m
∞∑

q=k+1

a2
qq!.
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Recalling the assumption Var(f(N ′)) =
∑

q≥m a
2
qq! < ∞, where N ′ ∼ N (0, 1), we con-

clude that

lim
k→∞

sup
n≥1

∞∑
q=k+1

q! ‖ft,n,q‖2
H⊗q → 0.

4.3 Self-Similar Processes with Stationary Increments

In this section we introduce the concept of self-similar processes with stationary incre-
ments. These will be important for understanding the noncentral limit theorem in follow-
ing section because these are the only candidates for the limit of partial sum processes.
This section is based off [GKS12].

Definition 4.3.1. A stochastic process (Xt)t∈T is self-similar if there exists a H > 0,

such that for all a > 0, (Xat)t∈T
d
= (aHXt)t∈T . We call H the self-similarity parameter.

Definition 4.3.2. A stochastic process (Xt)t∈T has stationary increments if

(Xt+s −Xs)t∈T
d
= (Xt −X0)t∈T

for all s ∈ T .

Consider the covariance function

RH(t, s) :=
1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (4.3.1)

Proposition 4.3.3. For H ∈ (0, 1), let X = (Xt)t∈T be a H-self-similar process with
stationary increments and E(X2

1 ) = 1. Then

(i) X0 = 0 almost surely,

(ii) E(Xt) = 0 for all t ∈ T ,

(iii) E(XsXt) = RH(s, t) for all s, t ∈ T .

Proof. (i) If 0 ∈ T , the self-similarity property implies that X0
d
= cHX0 for all c > 0, so

X0 = 0 almost surely.
(ii) Fix s ∈ T . Using self-similarity and the stationary increments property, for all

nonzero t ∈ T we have

E(Xs) = E(Xt+s −Xt) =

((
t+ s

t

)H
− 1

)
E(Xt).

For t = s, this implies that E(Xs) = 0 because H > 0. Therefore, E(Xt) = 0 for all
nonzero t ∈ T . When t = 0, (i) implies E(X0) = 0.

(iii) The self-similarity property implies that Xt
d
= tHX1, so E(X2

t ) = |t|2H . Using
the stationary increments property, we have

E(XsXt) =
1

2

(
E(X2

t ) + E(X2
s )− E

(
(Xt −Xs)

2
))
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=
1

2

(
E(X2

t ) + E(X2
s )− E

(
(Xt−s)

2
))

=
1

2

(
|t|2H + |s|2H − |t− s|2H

)
,

for all s, t ∈ T .

If X is a H-self-similar process with stationary increments and finite variance, then
using the triangle inequality we have that

2H E(X2
t )1/2 = E(X2

2t)
1/2 ≤ E((X2t −Xt)

2)1/2 + E(X2
t )1/2 = 2 E(X2

t )1/2.

Thus, we have 2H ≤ 2, which implies that H ≤ 1. Note that when H = 1, using
Proposition 4.3.3 (iii), we have

E
(
(Xt − tX1)2

)
= E(X2

t )− 2tE(XtX1) + t2 E(X2
1 ) = t2 − t(t2 + 1− (1− t)2) + t2 = 0.

Thus, Xt = tX1 almost surely. Since this is an uninteresting stochastic process, we have
will always assume that H ∈ (0, 1). Without loss of generality, we will also assume that
E(X2

1 ) = 1.
Consider the increment process of X defined by Y = (Yn)n∈Z where Yn := Xn+1−Xn.

We now introduce the notion of short range dependence and long range dependence.

Definition 4.3.4. Let Y = (Yn)n∈Z be a covariance stationary stochastic process with
autocovariance function ρ(n) = E(Y0Yn).

(i) If 0 <
∑

k∈Z |ρ(k)| <∞, then Y is said to exhibit short range dependence.

(ii) If
∑

k∈Z |ρ(k)| =∞, then Y is said to exhibit long range dependence.

Note that the case where
∑

k∈Z |ρ(k)| = 0 is excluded since in such a case, Yn and Ym
are uncorrelated for n 6= m. .

Proposition 4.3.5. Let Yn := Xn+1 − Xn for all n ∈ Z, where X is a H-self-similar
process with stationary increments. Then Y is weakly stationary with autocovariance
function

ρ(n) =
1

2

(
|n+ 1|2H − 2|n|2H + |n− 1|2H

)
∼ H(2H − 1)n2H−2.

Moreover, if H ∈ (0, 1/2) then Y exhibits short range dependence, and if H ∈ (1/2, 1)
then Y exhibits long range dependence.

Proof. We have that

E(Yk+nYk) = E ((Xk+n+1 −Xk+n) (Xk+1 −Xk))

= RH(k + n+ 1, k + 1)−RH(k + n+ 1, k)−RH(k + n, k + 1) +RH(k + n, k)

=
1

2

(
|n+ 1|2H − 2|n|2H + |n− 1|2H

)
,

for all k, n ∈ Z. Therefore ρ(n) = E(YnY0) = E(Yk+nYk), which implies that Y is weakly
stationary.
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For n ≥ 0, we can write ρ(n) = n2H−2L(n)/2, where

L(n) := n2

((
1 +

1

n

)2H

− 2 +

(
1− 1

n

)2H
)
.

Applying l’Hôpital’s rule twice to L(n) shows that L(n)→ 2H(2H−1) as n→∞. Thus,
ρ(n) ∼ H(2H − 1)n2H−2.

Thus, for some positive constant K,

∑
n∈Z

|ρ(n)| < K

∞∑
n=0

n2H−2.

If H ∈ (0, 1/2), this sum converges so Y exhibits short range dependence. If H ∈ (1/2, 1),
this sum diverges so Y exhibits long range dependence.

The canonical example of a self-similar process with stationary increments is fractional
Brownian motion. This class of processes also includes standard Brownian motion.

Definition 4.3.6. Let H ∈ (0, 1). A H-self-similar Gaussian process with stationary
increments is known as fractional Brownian motion and H is called the Hurst pa-
rameter.

From Proposition 4.3.3, it is clear that fractional Brownian motion is the only Gaus-
sian process that is also a H-self-similar process with stationary increments, in the sense
that every other such process is of the form σBH , for some σ > 0. We will only work with
the case where σ = 1, which is also known as standard fractional Brownian motion. There
are also non-Gaussian examples of self-similar processes with stationary increments, such
as Hermite processes which will be introduced in later sections.

When H = 1/2, fractional Brownian motion reduces to standard Brownian motion
on R. This immediately follows from the fact that centered Gaussian processes are
determined by the covariance function which becomes E(B

1/2
t B

1/2
s ) = t∧s, the covariance

function for standard Brownian motion.
The next result gives an alternative definition for fractional Brownian motion.

Proposition 4.3.7. Let H ∈ (0, 1). A stochastic process is fractional Brownian motion
if and only if it is a centered Gaussian process BH = (BH

t )t∈R with covariance function

E(BH
t B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (4.3.2)

Proof. One direction follows from Proposition 4.3.3. For the other direction, suppose that
BH is a centered Gaussian process with covariance function RH . Then since RH(at, as) =
a2HRH(t, s) and centered Gaussian processes are determined by their covariance function,
it follows that BH is similar. Similarly, it can be shown that E

(
(BH

t −BH
s )2
)

= |t− s|2H
so that it has stationary increments.

It is not immediately obvious that fractional Brownian motion exists. To establish
existence, it suffices to show that RH is a valid covariance function, meaning that RH is
positive semi-definite. A proof of this fact can be found in [Nou12]. Next we show the
continuity of the sample paths.
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Proposition 4.3.8. Let BH be fractional Brownian motion with Hurst parameter H.
There exists a version of BH with locally Hölder continuous paths of order α < H.

Proof. Using the self-similarity and stationary increments property, we have

E
(∣∣BH

t −BH
s

∣∣q) = E
(∣∣BH

t−s
∣∣q) = E

(∣∣BH
1

∣∣q) |t− s|qH .
Then by the Kolmogorov continuity criteria, there exists a version of BH with Hölder
continuous paths of order α < (qH − 1)/q. Then letting q → ∞ gives the required
result.

It is well-known that an appropriately normalized sum of independent and identi-
cally distributed random variables can only converge in distribution to a stable random
variable. In fact an analogous result holds in the case of convergence in finite dimension
distribution for stochastic processes. Lamperti [Lam62] proved a theorem which says that
the limit of any normalized partial sum must be a self-similarity. Moreover, it motivates
the introduction of self-similar processes and their use in various applications.

Theorem 4.3.9. Suppose that (Xn)n∈Z is a stationary process and there exists a deter-
ministic sequence an →∞ and a nonzero stochastic process (Zt)t≥0 such that

1

an

bntc∑
k=1

Xk
ffd→ Zt.

Then (Zt)t≥0 is a continuous and H-self-similar process with stationary increments, for
some H > 0, and an = nHL(n), where L is a slowly varying function. Furthermore,
every self-similar process is the limit of such a partial sum process.

In the next section, we will see that the partial sum processes under the assumptions
we have set out in Section 4.1 converges either to Brownian motion or the Hermite
process based on the dependence structure of (Xn)n∈Z. This theorem explains why we
will assume that the autocovariance is in the form ρ(n) ∼ nHL(n), where L is a slowly
varying function.

4.4 Noncentral Limit Theorem for Partial Sum Pro-

cesses

We have the following fact.

Proposition 4.4.1. Let X = (Xn)n∈Z be a stochastic process with autocovariance func-
tion ρ(n) = n−αL(n), where L is slowly varying function.

(i) If 0 < α < 1, then Y has long range dependence.

(ii) If α > 1, then Y has short range dependence.

Proof. See Section 3.1 in [GKS12].



4.4. NONCENTRAL LIMIT THEOREM FOR PARTIAL SUM PROCESSES 51

The condition from Theorem 4.2.1,
∑

n∈Z |ρ(n)|m < ∞ is actually equivalent to∑
n∈Z |ρf (n)| <∞, where ρf is the autocovariance function of f(X). Thus, the Gaussian

subordinated process f(X) exhibits short range dependence. It is interesting to ask how
applying f affects the short or long range dependence of X. Not surprisingly, the answer
depends on the Hermite rank.

If X exhibits short range dependence then, so does f(X). But if ρ(n) ∼ n−αL(n)
where L is a slowly varying function and 0 < α < 1 then X exhibits long range depen-
dence. If 1/m < α < 1, where m is the Hermite rank of f , then f(X) exhibits short range
dependence. So Theorem 4.2.1 is applicable when the underlying Gaussian process X
has short range dependence or even long range dependence as long as the f(X) exhibits
short range dependence. On the other hand if α ≤ 1/m, then we have that f(X) exhibits
long range dependence. The mathematical details of the above discussion can be found
in Section 4.6 of [GKS12].

The critical case α = 1/m is interesting, because it turns out that that we can still
get a central limit theorem, but instead of dividing Vn by

√
n as in Theorem 4.2.1, we

use
√
n log(n). This is proved in [BM83].

In this section, we will discuss the remaining case, α < 1/m. Here we assume the
underlying Gaussian process X has long range dependence with autocovariance function
of the form

ρ(n) ∼ n−αL(n), (4.4.1)

where 0 < α < 1.

Definition 4.4.2. Let q ≥ 1 and H ∈ (1/2, 1). The Hermite process of order q and
self-similarity parameter H denoted (Zq,H

t )t∈[0,1] is defined as Zq,H
t = Iq(Lt), where

Lt(y1, . . . , yq) = dq,H

∫ t

0

q∏
i=1

(u− yi)
− 1

2
− 1−H

q

+ du,

dq,H =

 H(2H − 1)

q!β
(

1
2
− 1−H

q
, 2(1−H)

q

)q
1/2

.

The parameter dq,H has been chosen so that Var(Zq,H
1 ) = 1. In Chapter 5 we prove

the existence of the Hermite process and derive its main properties.
Now we can state the noncentral limit theorem.

Theorem 4.4.3 (Taqqu, Dobrushin and Major). Let f : R → R be the function in
(4.1.2) with Hermite rank m, and Vn be defined in (4.1.1). If (4.4.1) holds and α < 1/m,
then

cm,α
nHL(n)m/2

Vn
fdd−−→ Zm,H ,

where Zm,H is a Hermite process of order m and self-similarity parameter H = 1 −
(mα)/2, and

cm,α =
1

am

(
m!(1−mα)(2−mα)

2

)1/2

.
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Proof. See Taqqu [Taq79] or Dobrushin and Major [DM79].

Let us now summarize the results that we have proven in this chapter.

Corollary 4.4.4. Using the notation in Theorem 4.2.1 and Theorem 4.4.3, we have:

(i) If X exhibits short range dependence, then f(X) exhibits short range dependence
and as n→∞,

1√
n
Vn

fdd−−→ σB.

(ii) If X exhibits long range dependence and satisfies (4.4.1) with α > 1/m, then f(X)
exhibits short range dependence and as n→∞,

1√
n
Vn

fdd−−→ σB.

(iii) If X exhibits long range dependence and satisfies (4.4.1) with α = 1/m, then f(X)
exhibits long range dependence and as n→∞,

1√
n log(n)

Vn
fdd−−→ σB.

(iii) If X exhibits long range dependence and satisfies (4.4.1) with α < 1/m, then f(X)
exhibits long range dependence and as n→∞,

cm,α
nHL(n)m/2

Vn
fdd−−→ Zm,H .

For more recent results in the continuous time analogue of these limit theorems see
Buchmann and Chan [BC09], which makes use of the fourth moment theorem. Also see
Hariz [Har02].

4.5 Simulating the Hermite Process

It is possible to use Theorem 4.4.3 to simulate the Hermite process by setting the un-
derlying Gaussian process to fractional Gaussian noise, XH

n = BH
n −BH

n−1, the increment
process of fractional Brownian motion,

From Proposition 4.3.5, we showed that for H > 1/2, the increments of fraction
Brownian motion exhibits long range dependance. Then we can apply Theorem 4.4.3 to
fractional Gaussian noise with f = Hq.

Corollary 4.5.1. Fix q ≥ 1 and H ∈ (1/2, 1). Let XH′ be fractional Gaussian noise
with Hurst parameter H ′ = 1− (1−H)/q. Then

bq,H
nH

[nt]∑
k=1

Hq(X
H′

k )
fdd−−→ Zq,H ,

where

bq,H =
1

aq

 q!H(2H − 1)(
1− 1−H

q

)q (
1− 2(1−H)

q

)q
1/2

.
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Figure 4.1: Sample paths of the Hermite process of order 2 and self-simiarlity parameter
H = 0.8.

Example 4.5.2. We will simulate the Hermite process for q = 2, 3 and H = 0.8. To do
this, we first simulate fractional Brownian motion with Hurst parameter H ′. This can
simply be done using any technique to simulate multivariate normal random variables,
such as the Cholesky decomposition. Next we take the difference to form fractional
Gaussian noise, XH′ . Lastly, calculate

bq,H
nH

∑[nt]
k=1Hq(X

H′

k ).

The following graphs plot the sample path of the Hermite process Zq,H
t and an estimate

of the density of the Hermite distribution Zq,H
1 . We used n = 1, 000 grid points. In the

case of the distribution, we used 100,000 simulations of the sample path, and applied a
kernel smoother to approximate the density function. It appears from these simulations
that the Hermite distribution of order 3 is bimodal (see Figure 4.4).

Not much is known about the Hermite process in the literature and its numerical
properties. However, recently Veillette and Taqqu [VT13] have release results from a
numerical evaluation of the Rosenblatt process, the Hermite process when q = 2. Their
method involves calculating cumulants and using Fourier inversion.
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Figure 4.2: Stimulated Hermite distribution of order 2 and self-simiarlity parameter
H = 0.8.
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Figure 4.3: Sample paths of the Hermite process of order 3 and self-simiarlity parameter
H = 0.8.
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Figure 4.4: Stimulated Hermite distribution of order 3 and self-simiarlity parameter
H = 0.8.
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Chapter 5

Hermite Process

The study of self-similar processes with stationary increments and long range dependence
has been of considerable interest in many fields of applications, such as finance, hydrology,
and Internet traffic. Such processes may naturally arise. For example, it is conjectured
[AN13] that stock prices exhibit self-similarity, that is fractal behavior, due to agents
differing interpretations of information and investment horizons. Thus, these processes
can play a useful role in modeling a wide range of phenomena.

In this chapter, we examine the properties of the Hermite process, a class of self-
similar processes with stationary increments, which includes fractional Brownian motion,
and also non-Gaussian processes. We will construct an estimator for the Hurst parameter
using the quadratic variation. Our main purpose is to apply the properties of the Wiener
chaos and the central and noncentral limit theorems from Chapter 4 to compute the
limiting distribution of a estimator for the Hurst parameter.

The main reference for this section are Chronopoulou, Tudor and Veins [CTV11,
TV09].

5.1 Hermite Process

Let BH be a fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) and define
the kernel of fractional Brownian motion as

KH(t, s) = cH1[0,t](s)s
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2 du (5.1.1)

cH =

(
H(2H − 1)

β(2− 2H,H − 1
2

))1/2

.

Throughout this chapter, we will make use of various identities in the case where H ∈
(1/2, 1) relating to KH and RH defined in (4.3.2). These identities are listed below and
can be easily verified using elementary calculus techniques.∫ t∧s

0

KH(t, u)KH(s, u) du = RH(t, s) (5.1.2)

H(2H − 1)

∫ t

0

∫ s

0

|u− v|2H−2 dudv = RH(t, s) (5.1.3)

∂KH

∂t
(t, s) = cH

(
t

s

)H− 1
2

(t− s)H−
3
2 (5.1.4)

57
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0

∂KH

∂u
(u, y)

∂KH

∂v
(v, y) dy = H(2H − 1)|u− v|2H−2. (5.1.5)

In this chapter, we will work on the Hilbert space H = L2([0, 1]). The primary object
of study is the Hermite process introduced in Definition 4.4.2. Here we will define the
Hermite process as a sequence in the qth Wiener chaos, using an integral representation
on a finite interval.

Definition 5.1.1. Let q ≥ 1 and H ∈ (1/2, 1). The Hermite process of order q and
self-similarity parameter H denoted (Zq,H

t )t∈[0,1] is defined as Zq,H
t = Iq(Lt,q), where

Lt,q(t1, . . . , tq) = dH1[0,t]q(t1, . . . , tq)

∫ t

t1∨···∨tq

∂KH′

∂u
(u, t1) . . .

∂KH′

∂u
(u, tq) du,

dH =

(
H(2H − 1)

q!(H ′(2H ′ − 1))q

)1/2

,

H ′ = 1 +
H − 1

q
,

and KH′ is the kernel of fractional Brownian motion in (5.1.1).

Note that the Hermite process is only defined for H ∈ (1/2, 1), which is equivalent to
H ′ ∈ (1 − 1/(2q), 1). When H ∈ (0, 1/2], the kernel Lt,q is not in L2([0, 1]q) so that the

Hermite process is not defined. The parameter dH has been chosen so that E
(

(Zq,H
1 )2

)
=

1. For simplicity, the notation ∂K(u, t) will be used to denote ∂KH′(u, t)/∂u.
Next we will show that the two definitions of the Hermite process given are equivalent.

Proposition 5.1.2. The Hermite process as defined in Definition 4.4.2 and Definition
5.1.1 are equivalent.

Proof. See Theorem 1.1 in [PT10].

The following result will be useful in a few proofs we give.

Lemma 5.1.3. Let q ≥ 1 and s, t, x, y ∈ [0, 1]. Suppose that f, g are Riemann-integrable
functions. Then∫

[0,t∧s]q

∫ t

y∨t1∨···∨tq

∫ s

x∨t1∨···∨tq
g(u, v, x, y)

q∏
i=1

f(u, v, ti) dudvdt1 . . . dtq

=

∫ t

y

∫ s

x

g(u, v, x, y)

(∫ u∧v

0

f(u, v, t) dt

)q
dudv.

Proof. The result immediately follows from Fubini’s theorem, so we only need to discuss
how the limits in the integrals change. Since u ∈ [x∨t1∨· · ·∨tq, s] and v ∈ [y∨t1∨· · ·∨tq, t],
we have that ti ∈ [0, u ∧ v] for all i = 1, . . . q, where u ∈ [x, s] and v ∈ [y, t].

The Hermite process is an example of a non-Gaussian self-similar process with sta-
tionary increments when q ≥ 2. We outline of its properties below.

Proposition 5.1.4. Let (Zq,H
t )t∈[0,1] be a Hermite process of order q and self-similarity

parameter H. Then
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(i) The Hermite process exists if and only if H ∈ (1/2, 1).

(ii) Zq,H is self-similar with parameter H.

(iii) Zq,H has stationary increments.

(iv) E
(
Zq,H
t

)
= 0.

(v) E
(
Zq,H
s Zq,H

t

)
= 1

2

(
s2H + t2H + |s− t|2H

)
.

(vi) Zq,H has locally Hölder-continuous path of all orders α < H.

(vii) The increments of Zq,H have long-range dependence

Proof. First, we prove (i). Since the Hermite process is defined as a Wiener-Itô integral,
we need to show that kernel Lt,q ∈ L2([0, 1]q) if and only if H ∈ (1/2, 1). Suppose that
H ∈ (1/2, 1), then

‖Lt,q‖2
H⊗q = q!d2

H

∫
[0,t]q

∫ t

t1∨···∨tq

∫ t

t1∨···∨tq
∂K(u, t1)∂K(v, t1) . . . ∂K(u, tq)∂K(v, tq)

dudvdt1 . . . dtq.

Now using Lemma 5.1.3, then (5.1.5) and (5.1.3), we have

‖Lt,q‖2
H⊗q = q!d2

H

∫ t

0

∫ s

0

(∫ u∧v

0

∂K(u, y)∂K(v, y) dy

)q
dudv

= q!d2
H(H ′(2H ′ − 1))q

∫ t

0

∫ s

0

|u− v|2H−2 dudv

=
q!d2

H(H ′(2H ′ − 1))q

H(2H − 1)
RH(t, t)

= t2H

<∞.

So the Hermite process exists for H ∈ (1/2, 1). Conversely, if H ≥ 1 then H ′ ≥ 1 which
implies that the integral in the first equality diverges. If H ≤ 1/2, then the integral in
the second equality diverges.

Now we prove (ii). Let c > 0, we have

Zq,H
ct =

∫ ct

0

. . .

∫ ct

0

∫ ct

y1∨···∨yq
∂1KH′(u, y1) . . . ∂1KH′(u, yq) dudWy1 . . . dWyq

= c

∫ ct

0

. . .

∫ ct

0

∫ t

y1
c
∨···∨ yq

c

∂1KH′(cu, y1) . . . ∂1KH′(cu, yq) dudWy1 . . . dWyq

= c

∫ t

0

. . .

∫ t

0

∫ t

y1∨···∨yq
∂1KH′(cu, cy1) . . . ∂1KH′(cu, cyq) dudWcy1 . . . dWcyq .

Now using the self-similarity of Brownian motion, Wct
d
= c1/2Wt and the fact ∂1KH′(cu, cy) =

cH
′−3/2∂1KH′(u, y), we have that Zq,H

ct = cHZq,H
t . This argument can be made rigorous

(see Proposition 14.3.5 in [GKS12]).
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Next, (iii) follows from the fact that Lt+s − Ls = Lt−s, so that Iq(Lt+s) − Iq(Ls) =
Iq(Lt−s), for all q ≥ 1 and s, t ∈ [0, 1]. Using the translation invariance of Gaussian

white noise, it can be shown that Iq(Lt−s)
d
= Iq(Lt) (see Proposition 14.3.5 in [GKS12]).

Therefore, Zq,H
t+s − Zq,H

s
d
= Zq,H

t .

The other results directly follow from the fact that Zq,H
t is a H-self-similar process

with stationary increments by using Proposition 4.3.3, Proposition 4.3.5, and Proposition
4.3.8.

From Proposition 5.1.4, the Hermite process has zero mean and covariance function
RH . In addition, if q = 1, then it is in the first Wiener chaos, so it is also Gaussian. There-
fore, when q = 1, the Hermite process is fractional Brownian motion with H ∈ (1/2, 1).
It can easily be checked that L1,t(s) = KH(t, s), so we have a integral representation of
fractional Brownian motion on a finite interval,

BH
t =

∫ t

0

KH(t, s) dBs.

This is why we previously called KH the kernel of fractional Brownian motion. Note this
is only valid when H ∈ (1/2, 1). When H ∈ (0, 1/2), the kernel is different. However, we
will not need make use of that case.

Definition 5.1.5. When q = 2, the Hermite process Z2,H is known as the Rosenblatt
process.

For q ≥ 2, the Hermite process is an example of an non-Gaussian self-similar process
with stationary increments.

5.2 Convergence of the Quadratic Variation of the

Hermite Process

In this section we study the the convergence of the discrete quadratic variations of the
Hermite process. We will then use the limiting distribution to construct an estimator for
the Hurst parameter and derive its limiting distribution.

Suppose that the Hermite process Zq,H is observed at discrete times t = 0, t1, . . . , tn,
where ti = i/n. Then the discrete centered p-variation statistic of Zq,H reduces to

Un(p) =
1

n

n−1∑
i=0


∣∣∣Zq,H

i+1
n

− Zq,H
i
n

∣∣∣k
E

(∣∣∣Zq,H
i+1
n

− Zq,H
i
n

∣∣∣k) − 1

 .

In the case where p = 2, using Proposition 5.1.4 (v), the discrete centered quadratic
variation statistic of Zq,H is

Un := Un(2) =
1

n

n−1∑
i=0


(
Zq,H
i+1
n

− Zq,H
i
n

)2

E

((
Zq,H
i+1
n

− Zq,H
i
n

)2
) − 1
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= n2H−1

n−1∑
i=0

((
Zq,H
i+1
n

− Zq,H
i
n

)2

− n−2H

)
.

The main result of this section is to prove that Un converges to normal random
variable in q = 1 case when H ∈ (1/2, 3/4), otherwise it coverages to a Rosenblatt
random variable.

In the fractional Brownian motion case, when q = 1 and Zq,H = BH , Un may converge
to either a normal random variable or a Rosenblatt random variable.

Theorem 5.2.1. Let q = 1, then we have:

(i) If H ∈ (0, 3
4
), then b1,Hn

− 1
2Un

d−→ N(0, 1) as n→∞, where

b1,H =

(
2 +

∞∑
q=1

(
2q2H − (q − 1)2H − (q + 1)2H

)2

)−1/2

.

(ii) If H = 3
4
, then b2,H(n log(n))−

1
2Un

d−→ N (0, 1) as n→∞, where

b2,H =
1

2H(2H − 1)
.

(iii) If H ∈ (3
4
, 1), then b3,Hn

1−2HUn
d−→ Z2,2H−1 as n→∞, where

b3,H =

(
4H − 3

2H2(2H − 1)

)1/2

.

Proof. These results follow from Corollary 4.4.4 with t = 1, so that we obtain limit
theorems for random variables. Put f = H2, the second Hermite polynomial, and set the
underlying Gaussian process to fractional Gaussian noise, X = XH .

In the case of a Hermite process of order q ≥ 2, the convergence of Un is always
a Rosenblatt random variable. Note that we cannot apply Theorem 4.4.3 because the
Hermite process is non-Gaussian, but interestingly the result turns out as expected.

Theorem 5.2.2. Let q ≥ 2, then cq,Hn
2−2H′Un → Z2,2H′−1

1 in L2(Ω) as n→∞, where

cq,H =

(
(4H ′ − 3)(4H ′ − 2) (((H ′ − 1)(q − 1) + 1)((2H ′ − 2))(q − 1) + 1)2

4(H ′(2H ′ − 1))2qd4
q,H(q − 1)!2q4

)1/2

We will use the next section to prove this result. Note that using the fourth mo-
ment theorem or other normal approximation methods will fail here as the limit is non-
Gaussian. Thus, we will need to work more directly with the properties of the Wiener
chaos.
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5.3 Proof of Theorem 5.2.2

The following proof is from Chronopoulou, Tudor and Veins [CTV11, TV09].

Lemma 5.3.1. Let fi,n := L(i+1)/n − Li/n and Ii := [(i+ 1)/n, i/n]. Then for all r =
1, . . . , q − 1, we have

(fi,n ⊗r fi,n)(t1, . . . , t2q−2r) = (H ′(2H ′ − 1))qd2
q,H

∫
Ii

∫
Ii

∂K(u, t1) . . . ∂K(u, tq−r)

∂K(v, tq−r+1) . . . ∂K(v, t2q−2r)|u− v|(2H
′−2)q dudv. (5.3.1)

Proof. Using the definition of a contraction, we have

(fi,n ⊗r fi,n)(t1, . . . , t2q−2r) =

∫
[0,1]r

(L i+1
n
− L i

n
)(t1, . . . , tq−r, s1, . . . , sr)

(L i+1
n
− L i

n
)(tq−r+1, . . . , t2q−2r, s1, . . . , sr) ds1 . . . dsr

= A(i+1)/n,(i+1)/n − A(i+1)/n,i/n − Ai/n,(i+1)/n + Ai/n,i/n,

where

Aa,b = d2
q,H

∫
[0,1]r

1[0,a]q(t1, . . . , tq−r, s1, . . . , sr)1[0,b]q(tq−r+1, . . . , t2q−2r, s1, . . . , sr)(∫
J1,a

∂KH′(u, t1) . . . ∂KH′(u, tq−r)∂KH′(u, s1) . . . ∂KH′(u, sr) du

)
(∫

J2,b

∂KH′(v, tq−r+1) . . . ∂KH′(v, t2q−2r)∂KH′(v, s1) . . . ∂KH′(v, sr) dv

)
ds1 . . . dsr

J1,a := [t1 ∨ · · · ∨ tq−r ∨ s1 ∨ · · · ∨ sr, a],

J2,b := [tq−r+1 ∨ · · · ∨ t2q−2r ∨ s1 ∨ · · · ∨ sr, b].

Now we can apply Fubini’s theorem, followed by (5.1.5) to get

Aa,b = d2
q,H1[0,a]q−r×[0,b]q−r(t1, . . . , t2q−2r)

∫ a

t1∨···∨tq−r

∫ b

tq−r+1∨···∨t2q−2r

∂KH′(u, t1) . . . ∂KH′(u, tq−r)∂KH′(v, tq−r+1) . . . ∂KH′(v, t2q−2r)(∫ u∧v

0

∂KH′(u, s)∂KH′(v, s) ds

)r
dudv

= (H ′(2H ′ − 1))rd2
q,H

∫ a

t1∨···∨tq−r

∫ b

tq−r+1∨···∨t2q−2r

∂KH′(u, t1) . . . ∂KH′(u, tq−r)

∂KH′(v, tq−r+1) . . . ∂KH′(v, t2q−2r)|u− v|(2H
′−2)r dudv.

In the last equality, the indicator function can be dropped because ∂K(u, t) as a function
of t is supported on [0, u] which is a subset of [0, a], while ∂K(v, t) is supported on [0, v].
Let B(u, v) be the integrand in Aa,b and note that the integrand is the same for all these
terms. Now we have

A(i+1)/n,(i+1)/n − A(i+1)/n,i/n = (H ′(2H ′ − 1))rd2
q,H

∫ i+1
n

t1∨···∨tq−r

∫
Ii

B(u, v) dudv
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= (H ′(2H ′ − 1))rd2
q,H

∫
Ii

∫ i+1
n

t1∨···∨tq−r
B(u, v) dvdu. (5.3.2)

Using a similar argument, we also have

Ai/n,(i+1)/n − Ai/n,i/n = (H ′(2H ′ − 1))rd2
q,H

∫
Ii

∫ i
n

tq−r∨···∨t2q−2r

B(u, v) dvdu. (5.3.3)

Finally, combining (5.3.2) and (5.3.3) yields.

(fi,n ⊗r fi,n)(t1, . . . , t2q−2r) = (H ′(2H ′ − 1))rd2
q,H

∫
Ii

∫
Ii

∂K(u, t1) . . . ∂K(u, tq−r)

∂K(v, tq−r+1) . . . ∂K(v, t2q−2r)|u− v|(2H
′−2)r dudv. (5.3.4)

We can now calculate the inner product using Fubini’s theorem

〈fi,n ⊗r fi,n, fj,n ⊗r fj,n〉H⊗2q−2r

= (H ′(2H ′ − 1))2rd4
q,H

∫
[0,1]2q−2r

(∫
Ii

∫
Ii

B(u, v) dudv

)(∫
Ij

∫
Ij

B(u′, v′) du′dv′

)
dt1 . . . dt2q−2r

= (H ′(2H ′ − 1))2rd4
q,H

∫
Ii

∫
Ii

∫
Ij

∫
Ij

(∫ 1

0

∂K(u, t)∂K(u′, t) dt

)q−r
(∫ 1

0

∂K(v, t)∂K(v′, t) dt

)q−r
|u− v|(2H′−2)r|u′ − v′|(2H′−2)r dv′du′dvdu

= (H ′(2H ′ − 1))2qd4
q,H

∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u− v|(2H′−2)r|u′ − v′|(2H′−2)r

|u− u′|(2H′−2)(q−r)|v − v′|(2H′−2)(q−r) dv′du′dvdu.

Note that ∂K(u, t)∂K(u′, t) as a function of t is nonzero only when u > t and u′ > t, so
that we can replace integration over [0, 1] with integration over [0, u ∧ u′]. This allows
(5.1.5) to be used at the last line with a similar result for v. Now make the change of
variables

x =

(
u− i

n

)
n, y =

(
v − i+ 1

n

)
n, x′ =

(
u′ − j

n

)
n, y′ =

(
v′ − j + 1

n

)
n,

which gives

〈fi,n ⊗r fi,n, fj,n ⊗r fj,n〉H⊗2q−2r = (H ′(2H ′ − 1))2qd4
q,Hn

−(2H′−2)2q−4

∫
[0,1]4
|x− y|(2H′−2)r

|x′ − y′|(2H′−2)r|x− x′ + i− j|(2H′−2)(q−r)

|y − y′ + i− j|(2H′−2)(q−r) dxdydx′dy′. (5.3.5)

This concludes the proof of the lemma.

Proof of Theorem 5.2.2. In this proof, we work on the Hilbert space H = L2([0, 1]) and
assume that q ≥ 2. We complete this proof in 4 steps.

Step 1 : Compute the Wiener chaos expansion of Un.
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Define the kernel of Zq,H
(i+1)/n − Z

q,H
i/n as fi,n := L(i+1)/n − Li/n. Then using Corollary

1.4.8 and Proposition 5.1.4 (ii), we have

(
Zq,H

(i+1)/n − Z
q,H
i/n

)2

= q! ‖fi,n‖2
H⊗q +

q−1∑
r=0

r!

(
q

r

)2

I2q−2r (fi,n ⊗r fi,n)

= n−2H +

q−1∑
r=0

r!

(
q

r

)2

I2q−2r (fi,n ⊗r fi,n) .

Therefore,

Un = T2q + c2q−2T2q−2 + · · ·+ c2T2, (5.3.6)

where

T2q−2r := n2H−1I2q−2r

(
n−1∑
i=0

fi,n ⊗r fi,n

)
and c2q−2r := r!

(
q

r

)2

, (5.3.7)

for all r = 0, 1, . . . , q − 1.
Step 2 : Show that T2 is the leading term of the Wiener chaos expansion.

From (5.3.7), the orthogonality property and the fact that
∥∥∥f̃i,n∥∥∥

H⊗q
≤ ‖fi,n‖H⊗q we

have that

E(T 2
2q−2r) ≤ (2q − 2r)!n4H−2

∥∥∥∥∥
n−1∑
i=0

fi,n ⊗r fi,n

∥∥∥∥∥
2

H⊗2q−2r

(5.3.8)

= (2q − 2r)!n4H−2

n−1∑
i,j=0

〈fi,n ⊗r fi,n, fj,n ⊗r fj,n〉H⊗2q−2r .

This sum decomposes into a diagonal term Cn when i = j and a non-diagonal term C ′n
when i, so that E(T 2

2q−2r) ≤ Cn + C ′n. Using Lemma 5.3.1 we get

Cn = (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

−2

n−1∑
i=0

∫
[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

|x− x′|(2H′−2)(q−r)|y − y′|(2H′−2)(q−r) dxdydx′dy′.

Since H ∈ (1/2, 1), the exponents (2H ′ − 2)r, (2H ′ − 2)(q − r) > −1, so the integral is
bounded. Therefore C = O(n−3), which approaches 0 as n → ∞. Next, we turn to the
non-diagonal term.

C ′n = (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

−22
∑
i>j

∫
[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

|x− x′ + i− j|(2H′−2)(q−r)|y − y′ + i− j|(2H′−2)(q−r) dxdydx′dy′

= (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

−22
n−2∑
i=0

n−1−i∑
j=1

∫
[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

|x− x′ + j|(2H′−2)(q−r)|y − y′ + j|(2H′−2)(q−r) dxdydx′dy′
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= (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

−22
n−2∑
i=0

n−1−i∑
j=1

∫
[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

|x− x′ + j|(2H′−2)(q−r)|y − y′ + j|(2H′−2)(q−r) dxdydx′dy′

= (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

−22
n−1∑
j=1

(n− j)
∫

[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

|x− x′ + j|(2H′−2)(q−r)|y − y′ + j|(2H′−2)(q−r) dxdydx′dy′

= (2q − 2r)!(H ′(2H ′ − 1))2qd4
q,Hn

(2H′−2)(2q−2r)2

∫
[0,1]4
|x− y|(2H′−2)r|x′ − y′|(2H′−2)r

(
1

n

n−1∑
j=1

(
1− j

n

) ∣∣∣∣x− x′n
+
j

n

∣∣∣∣(2H′−2)(q−r) ∣∣∣∣y − y′n
+
j

n

∣∣∣∣(2H′−2)(q−r)
)
dxdydx′dy′.

Now the term in the brackets is a Riemann sum, as n→∞ we have

lim
n→∞

n−(2H′−2)(2q−2r)C ′n = 2(2q − 2r)!(H ′(2H ′ − 1))2qd4
q,H

(∫ 1

0

∫ 1

0

|x− y|(2H′−2)r dxdy

)2

(∫ 1

0

(1− x)x(2H′−2)(2q−2r) dx

)
=

2(2q − 2r)!(H ′(2H ′ − 1))2qd4
q,H

(((H ′ − 1)r + 1)((2H ′ − 2)r + 1))2

1

((2H ′ − 2)(2q − 2r) + 1) ((2H ′ − 2)(2q − 2r) + 2)
.

where the first integral was evaluated using (5.1.3). Since H ∈ (1/2, 1) implies that (2H ′−
2)(2q− 2r) > −1, the off-diagonal term is dominant and we have C ′n = O(n(2H′−2)(2q−2r))
as n→∞. Therefore, for all r = 0, . . . , q − 1,

E(T 2
2q−2r) = O(n(2H′−2)(2q−2r)) (5.3.9)

as n→∞.
Thus, the dominant term in Un is T2 which occurs when r = q − 1. In this case, the

inequality in (5.3.8) can be replaced with equality because fi,n ⊗q−1 fi,n are symmetric
functions. Therefore, Un ∼ c2T2 and have proved that

lim
n→∞

c2
q,Hn

2(2−2H′) E(U2
n) = 1,

where

c2
q,H =

(4H ′ − 3)(4H ′ − 2) (((H ′ − 1)(q − 1) + 1)((2H ′ − 2))(q − 1) + 1))2

4(H ′(2H ′ − 1))2qd4
q,H(q − 1)!2q4

.

In order to show that cq,Hn
2−2H′Un

L2(Ω)−−−→ Z2,2H′−1
1 , (5.3.6) and the orthogonality prop-

erty implies that it suffices to show c2cq,Hn
2−2H′T2

L2(Ω)−−−→ Z2,2H′−1
1 and n2−2H′T2q−2r

L2(Ω)−−−→
0 for all r = 0, . . . , q − 2. Since we have proven to latter, we will now prove the former.
Let fn be the kernel of c2cq,Hn

2−2H′T2. By combining (5.3.7) and (5.3.4) that is

fn(t1, t2) = c′q,H(H ′(2H ′ − 1))q−1d2
q,Hn

2−2H′n2H−1

n−1∑
i=0

∫
Ii

∫
Ii

∂K(u, t1)∂K(v, t2)
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|u− v|(2H′−2)(q−1) dudv,

where c′q,H := c2cq,H . It is enough to show that fn converges in L2([0, 1]2) to the kernel

of Z2,2H′−1
1 which is

L1,2(t1, t2) = d2,2H′−11[0,1]2(t1, t2)

∫ 1

t1∨t2
∂K(u, t1)∂K(u, t2) du.

Step 3 : Prove that the kernel of T ′2 converges almost everywhere to the kernel of a
Rosenblatt random variable using a Riemann sum argument.

For large n, ∂K (u, t) is approximately equal to ∂K (i/n, t) when u ∈ Ii and u > t.
Hence,

fn(t1, t2) ∼ c′q,H(H ′(2H ′ − 1))q−1d2
q,Hn

2−2H′n2H−1

n−1∑
i=0

∫
Ii

∫
Ii

1{i/n>t1∧t2}(t1, t2)

∂K

(
i

n
, t1

)
∂K

(
i

n
, t2

)
|u− v|(2H′−2)(q−1) dudv. (5.3.10)

Using a change of variables then applying (5.1.3), it can easily be shown that∫
Ii

∫
Ii

|u− v|(2H′−2)(q−1) dudv =
n(2H′−2)(q−1)−2

((H ′ − 1)(q − 1) + 1)((2H ′ − 2)(q − 1) + 1)
. (5.3.11)

It can also be readily verified that c′q,H(H ′(2H ′ − 1))q−1d2
q,H = d2,2H′−1. Combining this

fact with (5.3.10) and (5.3.11) yields

fn(t1, t2) ∼ d2,2H′−1n
−1

n−1∑
i=0

1{i/n>t1∧t2}(t1, t2)∂K

(
i

n
, t1

)
∂K

(
i

n
, t2

)
.

This is a Riemann sum, so taking n→∞ we have

lim
n→∞

fn(t1, t2) = d2,2H′−11[0,1]2(t1, t2)

∫ 1

t1∨t2
∂K(u, t1)∂K(u, t2) du.

Thus, fn converges to L1,2 almost everywhere as n→∞.
Step 4 : Finally, prove that the kernel of T ′2 converges in L2([0, 1]2) to the kernel of a

Rosenblatt random variable using a Cauchy sequence argument.
To complete the proof we will show that (fn)n∈N is a Cauchy sequence. This implies

that fn converges in L2([0, 1]2), which must coincide with the pointwise limit proved in the
previous step. It suffices to prove that 〈fn, fm〉H⊗2 converges to a constant as n,m→∞.
Notice that

fn = Kn2−2H′n2H−1

n−1∑
i=0

fi,n ⊗q−1 fi,n,

for some K constant with respect to n. Then using (5.3.5), we have

〈fn, fm〉H⊗2 = K2(nm)−1

∫
[0,1]4
|x− y|(2H′−2)(q−1)|x′ − y′|(2H′−2)(q−1)

∣∣∣∣xn − x′

m
+
i

n
− j

m

∣∣∣∣2H′−2
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∣∣∣∣yn − y′

m
+
i

n
− j

m

∣∣∣∣2H′−2

dxdydx′dy′.

The terms x/n, x′/m, y/n, and y′/m are negligible for large n and m. Thus, this is a
Riemann sum, so taking n,m→∞ gives

lim
n,m→∞

〈fn, fm〉H⊗2 = K2

(∫
[0,1]2
|x− y|2H′−2 dxdy

)2 ∫
[0,1]2
|x− y|(2H′−2)(q−1) dxdy.

Since H ∈ (1/2, 1), the exponents 2H ′ − 2, (2H ′ − 2)(q − 1) > −1, so the integral is
bounded and the limit approaches a constant. Thus, ‖fn − fm‖H⊗2 → 0 as n,m → ∞,
so that fn is Cauchy. Therefore, fn converges to L1,2 in L2([0, 1]2) as n → ∞. This
completes the proof of the theorem.

5.4 Estimating Hurst Parameter

Let the discrete uncentered quadratic variation of Zq,H be

SN =
1

n

n−1∑
i=0

(
Zq,H
i+1
n

− Zq,H
i
n

)2

.

Then it immediately follows that 1 + Un = n2HSn, which motivates

Ĥn = − logSn
2 log n

as a estimator for the Hurst parameter H.
In this section we will show that Ĥn is a consistent estimator for H and derive its

limiting distribution.

Proposition 5.4.1. The estimator Ĥn → H almost surely as n→∞.

Proof. For simplicity, K will denote a constant with respect to n in this proof, but will
not necessarily be the same constant. Using the Wiener chaos expansion of Un, the
orthogonality property, and Hölder’s inequality, we have

E(|Un|p) = E

(∣∣∣∣∣
q−1∑
r=0

c2q−2rT2q−2r

∣∣∣∣∣
p)
≤

q−1∑
r=0

c2q−2r E(|T2q−2r|p). (5.4.1)

Using (5.3.9) for all r = 0, . . . , q − 1, there exists a positive integer m1, such that for
all n > m1, we have E(T 2

2q−2r) ≤ Kn(2H′−2)(2q−2r). So for sufficiently large n, T2 is
the dominant term. Combining this with the hypercontractivity property of Wiener-Itô
integrals yields

E(|T2q−2r|p) ≤ E(T 2
2q−2r)

p/2 ≤ E(T 2
2 )p/2 ≤ Kn(2H′−2)p, (5.4.2)

where p > 1. Therefore, (5.4.1) and (5.4.1) gives E(|Un|p) ≤ Kn(2H′−2)p. Combining this
result with Markov’s inequality, we have

P(|Un| > ε) = P(|Un|p > εp) ≤ ε−p E(|Un|p) ≤ Kε−pn(2H′−2)ε ≤ Kn(− log(ε)
log(n)

− 2H−2
q )p.
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Now all all ε > 0,

− log(ε)

log(n)
− 2H − 2

q
< 0, (5.4.3)

when ε > n(2H−2)/q. Since H ∈ (0, 1), it follows that there exists a positive integer
m2, such that if n > m2, then (5.4.3) holds. Now choose p > 1 large enough that(
− log(ε)

log(n)
− 2H−2

q

)
p < −1. Therefore,

∞∑
n=0

P(|Un| > ε) ≤ K +K
∞∑

n=m1∨m2

n(− log(ε)
log(n)

− 2H−2
q )p <∞.

By Proposition A.3.4, this implies that Un
a.s.−−→ 0. Next, we can write

log(1 + Un) = −2(Ĥn −H) log(n).

Combining this with the fact that log(1 + x)/x→ 0 as x→∞, we have that

Un = 2(H − Ĥn) log(n)(1 + o(1)). (5.4.4)

Thus, as n→∞, Ĥn
a.s.−−→ H because Un

a.s.−−→ 0.

Theorem 5.4.2. Let q = 1, then we have:

(i) If H ∈ (1
2
, 3

4
), then b′1,Hn

− 1
2 log(n)(Ĥn − H)

d−→ N (0, 1) as n → ∞, where b′1,H =
2b1,H .

(ii) If H = 3
4
, then b′2,H(n log(n))−

1
2 (Ĥn−H)

d−→ N (0, 1) as n→∞, where b′2,H = 2b2,H

(iii) If H ∈ (3
4
, 1), then b′3,Hn

1−H log(n)(Ĥn−H)
d−→ Z2,H as n→∞, where b′3,H = 2b3,H

In the case of a Hermite process of order q ≥ 2, the convergence of Un is always a
Rosenblatt random variable.

Theorem 5.4.3. Let q ≥ 2, then c′q,Hn
2−2H′ log(n)(Ĥn − H) → Z2,2H′−1

1 in L2(Ω) as
n→∞, where c′q,H = 2cq,H

Proof. In Theorem 5.2.2, we proved that

E

(∣∣∣cq,Hn2−2H′Un − Z2,2H′−1
1

∣∣∣2)→ 0,

as n→∞. Now using (5.4.4), we have

E

(∣∣∣2cq,Hn2−2H′ log(n)(H − Ĥn)(1 + o(1))− Z2,2H′−1
1

∣∣∣2)→ 0.

Taking n→∞ gives the required conclusion.

Proposition 5.4.4. Let q ≥ 2 and Ĥ ′n = 1 + (Ĥn − 1)/q, then in L1(Ω),

c′q,Hn
2−2Ĥ′n log(n)(Ĥn −H)→ Z2,2H′−1

1

as n→∞.
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Proof. It suffices to show that

lim
n→∞

E
(∣∣∣(n2−2Ĥ′n − n2−2H′

)(
H − Ĥn

)
log(n)

∣∣∣) = 0. (5.4.5)

Choose ε ∈ (0, 2− 2H ′) and recalling the definition of H ′,

C :=
{
Ĥ ′n > 2H ′ − 1 + ε/2

}
=
{
Ĥn > 2H − 1 + qε/2

}
.

Now we can write

E
(∣∣∣(n2−2Ĥ′n − n2−2H′

)(
H − Ĥn

)
log(n)

∣∣∣) = E
(∣∣∣(n2−2Ĥ′n − n2−2H′

)(
H − Ĥn

)
log(n)

∣∣∣ 1C)
+ E

(∣∣∣(n2−2Ĥ′n − n2−2H′
)(

H − Ĥn

)
log(n)

∣∣∣ 1Cc)
=: A+B.

First we estimate A. Let x = (2 − 2H ′) ∨ (2 − Ĥ ′n) and y = (2 − 2H ′) ∧ (2 − Ĥ ′n).
Also, note that ez − 1 is a convex function so ez − 1 ≤ zez. Thus we have∣∣∣n2−2Ĥ′n − n2−2H′

∣∣∣ = ey log(n)
(
e(x−y) log(n) − 1

)
≤ ny log(n)(x− y)nx−y

= 2 log(n)nx
∣∣∣H ′ − Ĥ ′n∣∣∣

=
2

q
log(n)nx

∣∣∣H − Ĥn

∣∣∣ .
Then

A ≤ 2

q
E

(
1Cn

x
∣∣∣H − Ĥn

∣∣∣2 log(n)2

)
(5.4.6)

=
2

q
nx−2(2−2H′) E

(
1Cn

2(2−2H′)
∣∣∣H − Ĥn

∣∣∣2 log(n)2

)
. (5.4.7)

When ω ∈ C and either case x = 2− 2H ′ or x = 2− 2Ĥ ′n, we have x− 2(2− 2H ′) < −ε,
so that

A ≤ 2

q
n−ε E

(∣∣∣∣n2(2−2H′)
(
H − Ĥn

)2

log(n)2

∣∣∣∣) .
The expectation converges to a constant due to Theorem 5.4.3, so A → 0 as n → ∞. If
ω 6∈ C, then A = 0.

Next, we estimateB. Since ω ∈ Cc and ε < 2−2H ′, this implies that
∣∣∣n2−2H′ − n2−2Ĥn

∣∣∣ ≤
n2−2Ĥn and

∣∣∣H − Ĥn

∣∣∣ ≤ H, and then using Hölder’s inequality, we have

B ≤ H log(n) E
(

1Ccn
2−2Ĥn

)
≤ H log(n) P(Cc)1/p E

(
n2−2Ĥn2q

)1/(2q)

,
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where 1
p

+ 1
2q

= 1. Using Markov’s inequality, followed by Theorem 5.4.3, we have

P(Cc)1/p ≤
E

(∣∣∣H − Ĥn

∣∣∣2)1/p

(1−H − qε/2)2/p

≤ Kn−2(2−2H′)/p,

where K is a constant that does not depend on n. Now, we can write 1 + Un =
n2q(2−2Ĥ′n)n−2q(2−2H′) so that

E
(
N2−2Ĥn2q

)1/(2q)

≤ n2−2H′ E(1 + Un)1/(2q) = N2−2H′ ,

since E(Un) = 0. Putting this together, we have

B ≤ KH log(n)n−2(2−2H′)(2/p−1).

AS 2q ≥ 4, we have p ≤ 4/3 and −2(2− 2H ′)(2/p− 1) < 0. So B → 0 as n→∞.

Note that all of limit theorems in the section also hold in distribution, as convergence
in distribution is weaker than convergence in Lq(Ω).

There are other interesting applications of Malliavin calculus to parameter estimation
for Hermite processes. For example Breton, Nourdin and Peccati [BNP09] find exact con-
fidence intervals for the Hurst parameter of fractional Brownian motion using Malliavin
calculus.



Conclusion

Limit theorems through the use of Malliavin calculus and Stein’s method has been a
recent development in probability theory and stochastic analysis. In this text, we have
aimed to provide a comprehensive overview of this subject.

In particular, we have provided an introduction to the Wiener chaos and Malliavin
calculus, which gives the foundation for this theory. Using these tools with Stein’s method
allows for the derivation of total variation bounds to prove the fourth moment theorem.
A corollary to the fourth moment theorem was then used to prove the Breuer-Major
theorem, a central limit theorem for partial sum processes under short range dependence.
In the case of long range dependence, there is a noncentral limit theorem whereby these
partial sum processes converge to Hermite processes, a class of self-similar processes with
stationary increments that live on the Wiener chaos that are in general non-Gaussian.

An application of these central and non-central limit theorems was to find the limiting
distribution of an estimator of the Hurst parameter of fractional Brownian motion. In
the case of a Hermite process, using the properties of the Wiener chaos, it was shown
that the estimator of the Hurst parameter always converges to a Rosenblatt distribution.

In this text, we have given only a very small sample applications of this theory.
However, there is a large diversity of interesting applications and open questions in the
literature. For example, in the multivariate setting it is unknown if a central or non-
central limit theorem continues to hold for sequences of random vectors where components
have both short and long range dependence when the Hermite rank is greater than 2
[BT13a]. Also, it is surprising that still not much is known about the Hermite process.

Recently, there have also been interesting theoretical developments using the tech-
niques of Malliavin calculus. For example, Nourdin and Peccati [NP13] have computed
exact rates of convergence of the fourth moment theorem in the total variation bound. It
has also been shown by Arizmendi [Ari13] that for infinitely divisible distributions, the
fourth moment condition is sufficient for convergence to a normal distribution. There
have also been new applications, for example, Bardet and Tudor [BT13b] use these meth-
ods to investigate the distribution for the Whittle estimator of the Hurst parameter of
the Rosenblatt distribution. So this is an exciting area of active research.

71



72 CONCLUSION



Appendix A

Analysis and Probability

In this appendix we list some miscellaneous results from measure theory, functional anal-
ysis and probability theory that are used in the main text.

A.1 Measure Theory

The following result is a corollary to Lusin’s lemma and allows us to approximate indicator
functions by a sequence of bounded and continuous functions.

Lemma A.1.1 (Lusin). Let a > 0, B ⊆ [−a, a] be a Borel set on R, and µ be finite mea-
sure on [−a, a]. Then there exists a sequence of continuous functions (gn)n≥1 with support
included in [−a, a], such that gn(x) ∈ [0, 1] and gn(x) → 1B(x) µ almost everywhere as
n→∞.

Proof. See corollary to Theorem 2.24 in [Rud87].

A.2 Closed and Closable Operators

Many important linear operators are unbounded. However, some of these operators, such
as the derivative, turn out to be closed. In this section, we will discuss the construction of
closed extensions and see that it is possible to uniquely define the adjoint of unbounded
operators that are closed.

This summary on closed and closable operators is from Section 2.7 in [Jac01]. These
results apply to Banach spaces, as these results will be required to prove that the Malliavin
derivative D : S ⊆ Lq(Ω) → Lq(Ω → H) is a closable operator for q ∈ [1,∞). When
q = 2, this reduces to the Hilbert space case, and these results on closed and closable
operators can be found in most standard textbooks on functional analysis, such as [Kre78]
and [Con90].

Definition A.2.1. Let X ,Y be Banach spaces. The direct sum of X and Y is the
Banach space X ⊕Y , with elements (x, y) where x ∈ X , y ∈ Y . The usual operations on
X ⊕ Y are defined component-wise and the graph norm is

‖(x, y)‖2
X⊕Y = ‖x‖2

X + ‖y‖2
Y .

Definition A.2.2. Let A : dom(A) ⊆ X → Y be a linear operator with its domain
denoted by dom(A), then the graph of A is defined as

gra(A) := {(x,A(x)) ∈ X ⊕ Y | x ∈ dom(A)}.
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Definition A.2.3. A linear operator A : dom(A) ⊆ X → Y is densely defined if
dom(A) is dense in X .

Definition A.2.4. An linear operator A : dom(A) ⊆ X → Y is closed if gra(A) is a
closed set in X ⊕ Y .

Proposition A.2.5. Let X ,Y be Banach spaces. The following are equivalent:

(i) The operator A is closed.

(ii) For all sequences (xn)n≥1 ⊆ dom(A), if xn → x ∈ X and A(xn) → y ∈ Y, then
x ∈ dom(A) and A(x) = y.

(iii) The domain dom(A) equipped with the graph norm is a Banach space.

Definition A.2.6. Let A : dom(A) ⊆ X → Y and B : dom(B) ⊆ X → Y be linear
operators, then A is an extension of B if dom(B) ⊆ dom(A) and A(y) = B(y) for all
y ∈ Y . Further, A is a closable operator if it is the closed extension of some operator.

Let X denote the closure of X ⊆ X .

Proposition A.2.7. Let X ,Y be Banach spaces. The following are equivalent:

(i) The operator A is closable.

(ii) For all sequences (xn)n≥1 ⊆ dom(A) such that xn → 0 ∈ X and A(xn) → y ∈ Y,
then y = 0.

(iii) There exists some operator with graph gra(A).

Usually, we use Proposition A.2.7 (ii) to check that an operator is closable. From
Definition A.2.6, it is clear that it is possible to enlarge the domain of a closable operator
in a consistent way to construct a closed operator. From Proposition A.2.7 (iii) and
Proposition A.2.5 (ii), this construction should be done as follows: consider all sequences
(xn)∞x=1 ⊆ dom(A) such that xn → x ∈ X and A(xn) = y ∈ Y , then include all such x in
dom(A) to form dom(A) and set A(x) = y. The result is an operator A : dom(A) ⊆ X →
Y , which is a closed extension of A. The closed extension is unique when A is densely
defined. This is summarized in the following proposition. Proposition A.2.5 (iii), implies
that dom(A) is the closure of dom(A) with respect to the graph norm.

Proposition A.2.8. Let X ,Y be Banach spaces. Let A : dom(A) ⊆ X → Y be a densely
defined linear operator. Then A has a unique closed extension of A : dom(A) ⊆ X → Y.

In the special case of Hilbert spaces, it is possible to define an adjoint for closed
operators.

Proposition A.2.9. Let X ,Y be Hilbert spaces and A : dom(A) ⊆ X → Y is a densely
defined and closed linear operator. Then there exists a unique adjoint A∗ : dom(A∗) ⊆
Y → X . Furthermore,

dom(A∗) = {y ∈ Y |x 7→ 〈A(x), y〉Y is a bounded for x ∈ X} (A.2.1)

and A∗ is closed.
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A.3 Probability Theory

The following result gives a criteria for convergence in moments.

Proposition A.3.1. Let r ≥ 1 be an integer. If Xn
d→ X and supn≥0E(|Xn|r+ε) < ∞

where ε > 0, then E(Xr
n)→ E(Xr) and X ∈ Lr(Ω).

Proof. See corollary to Theorem 25.12 in [Bil95].

The next two proposition are from Section 6.6 in [Res99].

Proposition A.3.2. Let Xn, X ∈ L1(Ω) for all n ≥ 1. If Xn → X in L1 as n → ∞,
then E(Xn)→ E(X) as n∞. In particular, the conclusion holds when Xn → X in L2.

Proposition A.3.3. Let p ∈ [1,∞]. If Xn → X in Lp as n→∞, then ‖Xn‖p → ‖X‖p
as n→∞

The following is a simple criteria for almost sure convergence.

Proposition A.3.4. Let Xn, X be random variables. If for each ε > 0, we have
∑∞

n=1 ¶(|Xn−
X| > ε) <∞, then Xn

a.s.−−→ X as n∞.

Proof. See Corollary 5.2.2 of [Ros06].
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Appendix B

Hilbert Spaces

We list some concepts and results about orthonormal bases and the direct sums and
tensor products of Hilbert spaces. The facts about direct sums and tensor products are
not always found in the standard textbooks on functional analysis. This will mainly be
used in Chapter 1 and 2.

Throughout this appendix we will assume that the Hilbert space H is real and sepa-
rable.

B.1 Hilbert Space Valued Functions

Let (T,B, µ) be a measure space and H be a Hilbert space. Then for p ≥ 1, Lp(T →
H) := Lp(T → H,B, µ) is the set of H-valued functions, f , such that f is B-measurable
and ∫

T

‖f(t)‖pH dµ(t) <∞.

It turns out that L2(T → H) is a Hilbert space equipped with the inner product

〈f, g〉L2(T→H) =

∫
T

〈f(t), g(t)〉H dµ(t)

(see Section II.1, Example 6 in [RS80]).

B.2 Orthogonality

The definition and result in this section are from [KR97]. These books are also a useful
reference for other basic facts about Hilbert spaces.

Definition B.2.1. Let H be a Hilbert space. If the span of (ei)i∈N is dense in H, then
it is a total set. If (ei)i∈N is both an orthonormal sequence and a total set, then it is
called an orthonormal basis of H.

Proposition B.2.2. Let (ei)i∈N be a orthonormal sequence in a Hilbert space H. Then
the following are equivalent:

(i) The set (ei)i∈N is total.
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(ii) If f is orthogonal to ei for all i ∈ N, then f = 0.

(iii) For all f ∈ H, we have the orthogonal expansion

f =
∞∑
i=0

〈f, ei〉H ei.

Proof. See Theorem 2.2.9 in [KR97].

B.3 Direct Sum of Hilbert Spaces

While finite direct sums are an elementary part of Hilbert space theory, here we look at
infinite direct sums. The results in this section can be found in Section 2.3 in [BEH08].

Definition B.3.1. Let (Hi)i∈N be a family of mutually orthogonal subspaces of the
Hilbert space H. We say that H is the orthogonal direct sum of (Hi)i∈N,

H =
∞⊕
i=0

Hi,

if H equals the closure of the span of

∞⋃
q=0

Hi.

The orthogonal direct sum defined above is also known as the internal direct sum,
as opposed to the external direct sum which applies when (Hi)i∈N is only assumed to
be a family of Hilbert spaces, not necessarily subspaces of a larger Hilbert space. More
information can be found in [KR97], however, all direct sums that we encounter will be
internal direct sums.

More concretely, when a Hilbert space has an orthogonal direct sum decomposition, it
means that we can write the elements of the Hilbert space via an orthogonal expansion.

Proposition B.3.2. Let (Hi)i∈N be a family of mutually orthogonal subspaces of the
Hilbert space H. Then the following are equivalent:

(i) The orthogonal direct sum of (Hi)i∈N is H.

(ii) All f ∈ H can be written as

f =
∞∑
q=0

fq,

where fi ∈ Hi, fi is orthogonal to fj for all i 6= j, and
∑∞

i=0 ‖fi‖H <∞.



B.4. TENSOR PRODUCT OF HILBERT SPACES 79

B.4 Tensor Product of Hilbert Spaces

This definition for the tensor product of two Hilbert spaces is taken from [BEH08] and
is standard.

Definition B.4.1. Let H1,H2 be Hilbert spaces. The Hilbert space H1 ⊗ H2 is the
tensor product of H1 and H2 if there exists a bilinear map ⊗ : H1 × H2 → H1 ⊗ H2

such that (f1, f2) 7→ f1 ⊗ f2 which satisfies:

(i) For all f1, g1 ∈ H1, f2, g2 ∈ H2, we have 〈f1 ⊗ f2, g1 ⊗ g2〉H1⊗H2
= 〈f1, g1〉H1

〈f2, g2〉H2
.

(ii) The set {f1 ⊗ f2 | f1 ∈ H1, f2 ∈ H2} is total in H1 ⊗H2.

From this definition, the existence and uniqueness of the Hilbert space H1⊗H2 is not
immediately clear. See Section 2.4 of [BEH08] for a proof that the H1⊗H2 exists and is
unique up to isomorphism.

Proposition B.4.2. If U1 is a total set in H1 and U2 is a total set in H2, then {f1 ⊗
f2 | f1 ∈ U1, f2 ∈ U2} is a total set in H1 ⊗H2. Moreover, if (ei1)i1∈N is an orthonormal
basis for H1 and (ei2)i2∈N is an orthonormal basis for H2, then {ei1 ⊗ ei2 | i1, i2 ∈ N} is
an orthonormal basis for H1 ⊗H2.

Proof. See proposition 2.4.4 in [BEH08].

The tensor product is associative, meaning that (H1 ⊗H2) ⊗ H3 is isomorphic to
H1⊗ (H2 ⊗H3), so either can be defined as H1⊗H2⊗H3 (see Appendix E.1 in [Jan97]).
Thus, tensor powers can be defined inductively.

Definition B.4.3. Let H be a Hilbert space and q ≥ 1. The tensor product of H with
itself q times is the qth tensor power of H, denoted H⊗q. We set H⊗1 = H.

Proposition B.4.4. Let q ≥ 1. Let (ei)i∈N be an orthonormal basis for the Hilbert space
H. Then {ei1 ⊗ · · · ⊗ eiq | i1, . . . , iq ∈ N} is an orthonormal basis for H⊗q.

Proof. This follows from Proposition B.4.2.

Due to this proposition, each f ∈ H⊗q has an orthogonal expansion

f =
∞∑

i1,...,iq=0

ai1,...,iqei1 ⊗ · · · ⊗ eij .

Let Sq be the set of all permutations of {1, . . . , q}. Now we can define the symmetrization
operator.

Definition B.4.5. LetH be a Hilbert space and q ≥ 1. Let f ∈ H⊗q. The symmetriza-
tion of f is defined as

f̃ :=
1

q!

∑
σ∈Sn

∞∑
i1,...,iq=0

ai1,...,iqeiσ(1) ⊗ · · · ⊗ eiσ(j) .

A function f is said to be symmetric if f = f̃ . We may also use the notation sym(f)

instead of f̃ .
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Definition B.4.6. Let H be a Hilbert space and q ≥ 1. The qth symmetric tensor
power of H, denoted H�q is the range of the symmetrization operator applied to H⊗q.
We set H�1 = H.

The symmetrization operator is a orthogonal projection so that H�q is a closed
subspace of H⊗q and a Hilbert space (see Section 2.1 in [Gui72]). The elements of
H�q are the symmetric functions in H⊗q. We will equip H�q with the inner product
〈·, ·〉H�q = q! 〈·, ·〉H⊗q and the norm ‖·‖H�q =

√
q! ‖·‖H⊗q . Note that this choice of inner

product is not standard in Hilbert space theory, although it is standard in the Malliavin
calculus literature. Next, we introduce a few concepts needed to describe the orthonormal
basis of H�q.

Firstly, we will need the concept of a multiindex which is given in Definition 1.5.1.
We will also use the notation given in that definition.

Consider the sequence f = (fi)i∈N ⊆ H. We use the notation

f⊗a :=
∞⊗
i=0

f⊗aii ,

where the term f⊗aii is omitted whenever ai = 0.

Proposition B.4.7. Let q ≥ 1. Let e = (ei)i∈N be an orthonormal basis for the Hilbert
space H. Then {

1√
a!

sym
(
e⊗a
) ∣∣∣∣ a ∈ Aq}

is an orthonormal basis for H�q.

Proof. See Section 2.1 in [Gui72] and note that an adjustment is made for the fact that
we equipped H�q with the inner product q! 〈·, ·〉H⊗q , instead of 〈·, ·〉H⊗q .

In the case where H = L2(T,B, µ), where (T,B, µ) is a measure space and µ is a σ-
finite and nonatomic measure, the concepts discussed above can be put in a more familiar
form.

Proposition B.4.8. Let H = L2(T,B, µ), where (T,B, µ) is a measure space and µ is a
σ-finite and nonatomic measure. Then the symmetrization of f is

f̃(t1, . . . , tq) =
1

q!

∑
σ∈Sn

f(tσ(1), . . . , tσ(q)). (B.4.1)

Proof. See Appendix B in [NP12].

Proposition B.4.9. Let (T1, B1, µ1), (T2, B2, µ2) be measure spaces with σ-finite and
nonatomic measures. Let H be a separable Hilbert space Then:

(i) There exists a unique isomorphism from L2(T1, B1, µ1)⊗ L2(T2, B2, µ2)→ L2(T1 ×
T2, B1 ×B2, µ1 × µ2) such that f1 ⊗ f2 7→ f1f2.

(ii) There exists a unique isomorphism from L2(T1, B1, µ1)⊗H → L2(T1 → H, B1, µ1)
such that (x 7→ f1(x))⊗ f2 7→ (x 7→ f1(x)f2).
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(iii) There exists a unique isomorphism from L2(T1 × T2, B1 ×B2, µ1 × µ2)→ L2(T1 →
L2(T2, B2, µ2), B1, µ1) such that ((x, y) 7→ f(x, y)) 7→ (x 7→ (y 7→ f(x, y))).

Proof. See Theorem II.10 in [RS80].

Proposition B.4.10. Let H = L2(T,B, µ), where (T,B, µ) is a measure space and µ is
a σ-finite and nonatomic measure. Then for all q ≥ 1, H⊗q is isomorphic L2(T q, Bq, µq)
to and H�q is isomorphic to L2

s(T
q, Bq, µq), where L2

s(T
q, Bq, µq) is the subspace of sym-

metric functions in L2(T q, Bq, µq). In both cases the isomorphism sends f1 ⊗ · · · ⊗ fq 7→
f1 . . . fq.

Proof. TheH⊗q case follows from Proposition B.4.9 (i). For theH�q case, see Proposition
E.16 in [Jan97].

B.5 Contractions

The following section on contractions is from Appendix B in [NP12] and also [PT11].

Definition B.5.1. Let (ei)i∈N be an orthonormal basis for H. Let p, q ≥ 1, f ∈ H�p,
g ∈ H�p. Then for all r = 0, . . . , p ∧ q, the rth contraction of f and g is

f ⊗r g =
∞∑

i1,...ir=0

〈f, ei1 ⊗ · · · ⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir〉H⊗r .

We denote the symmetrization of f ⊗r g by f⊗̃rg.

Note that f, g are symmetric functions, 〈f, ei1 ⊗ · · · ⊗ eir〉H⊗r ∈ H�p−r and 〈g, ei1 ⊗
· · · ⊗ eir〉H⊗r ∈ H�q−r (see Section 8.5 in [PT11]). However, f ⊗r g ∈ H⊗p+q−2r is not
necessarily symmetric.

If p = q = r, then f ⊗r g = 〈f, g〉H⊗q . If r = 0, then f ⊗0 g reduce to the tensor
product f ⊗ g.

Proposition B.5.2. Let H = L2(T,B, µ), where (T,B, µ) is a measure space and µ is
a σ-finite and nonatomic measure. Let p, q ≥ 1, f ∈ H⊗p, g ∈ H⊗p. Then for all
r = 0, . . . , p ∧ q we have

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫
T r
f(t1, . . . , tp−r, s)g(tp+1, . . . , tp+q−r, s) dµ

r(s). (B.5.1)

Proof. See Appendix B in [NP12].
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